Effect of Ni/Si interlayer on microstructure and properties of laser welded aluminum/steel joints
-
摘要: 研究了以Ni箔以及预置Si粉的Ni箔为中间层的铝/钢异种金属激光焊行为. 系统考察了不同激光功率下预置Si粉的Ni箔中间层对铝/钢异种金属激光焊接头组织与性能的影响. 结果表明,加入预置Si粉的Ni箔做复合中间层时,与只添加Ni箔片做中间层时相比,焊接接头的最大剪切力明显提高,其中激光功率为2 150 W时焊接接头的最大剪切力提高至1 307.96 N;Si粉的添加增加了熔池的流动性,并使得铝/钢界面的物相组成、元素分布和微观组织形态发生了改变;焊缝区生成了Fe-Si及Al-Si二元新相,有效抑制了Fe-Al二元脆性相的生成,改善了铝/钢的焊接性. 因此,预置Si粉的Ni箔复合中间层的加入,可以有效地改善铝/钢异种金属激光焊过程中的冶金反应,进而提高焊接接头的力学性能.Abstract: The laser welding behavior of aluminum/steel dissimilar metal with Ni foil and Ni foil with Si powder as intermediate layer has been studied. The effect of Ni foil interlayer with Si powder at different power on the microstructure and properties of aluminum/steel dissimilar metals laser welded joints was investigated systematically. The results show that the tensile strength of the welded joint is obviously improved when the Ni foil with Si powder is added as the composite interlayer, the tensile strength of welded joint is increased to 1 307.96 N when the laser power is 2 150 W. The addition of Si powder increases the flowability of the molten pool, and changes the phase composition, element distribution and microstructure morphology of the aluminum/steel interface. Fe-Si and Al-Si binary phases were formed in the weld zone, which effectively suppressed the formation of Fe-Al binary brittle intermetallic compounds and improved the weldability of aluminum/steel. Therefore, the addition of Ni foil composite interlayer with Si powder can effectively improve the metallurgical reaction in the process of dissimilar metals laser welding of aluminum/steel, and then improve the mechanical properties of welded joints.
-
-
表 1 6061铝合金的化学成分(质量分数,%)
Table 1 Chemical compositions of 6061 aluminum alloy
Cu Si Mg Mn Fe Ti Zn Al 0.2 1.3 0.3 ~ 0.5 0.2 0.5 0.15 0.25 余量 表 2 不锈钢的化学成分(质量分数,%)
Table 2 Chemical compositions of stainless steel
Cr Mn Mg C Ni P Si S Fe 16 ~ 18 5.5 ~ 7.5 0.3 ~ 0.5 ≤ 0.15 3.5 ~ 5.5 0.05 1.0 0.03 余量 表 3 优化的激光器工艺参数
Table 3 Optimized laser process parameters
激光功率
P/W焊接速度
v/(mm·s−1)离焦量
△f/mm保护氩气流量
Q/(L·min−1)2 150 30 0 20 表 4 图2c ~ 2d中A ~ E区EDS成分分析(原子分数,%)
Table 4 EDS component analysis in A-E zone in Fig. 2c and Fig. 2d
区域 C Mg Al Si Cr Mn Fe Ni A 9.47 4.14 48.28 0.11 5.87 0.35 27.22 4.56 B 7.13 0.14 22.85 0.23 13.39 0.78 47.99 7.49 C 13.82 1.39 59.52 0.29 1.23 0.06 2.78 21.03 D 6.9 — 18.01 0.43 14.84 0.76 50.33 8.73 E 8.95 0.61 60.96 0.1 5.31 0.48 20.71 2.85 表 5 图4c ~ 4d中A ~ F区EDS成分分析(原子分数,%)
Table 5 EDS component analysis in A-F zone in Fig. 4c and Fig. 4d
区域 C Mg Al Si Cr Mn Fe Ni A 4.13 0.98 30.18 8.09 1.15 0.04 2.66 52.77 B 11.28 1.36 46.74 16.1 3.7 1.92 16.18 2.73 C 9.08 0.25 4.76 1.69 12.5 8.38 58.63 4.71 D 15.2 1.32 19.12 12.56 5.76 0.53 39.18 6.33 E 7.36 1.64 56.95 1.74 5.23 0.64 20.68 5.76 F 8.4 0.2 6.46 1.09 16.49 0.89 57.18 9.29 表 6 各Fe-Al,Fe-Si化合物的生成自由能
Table 6 Fe-Al, Fe-Si compounds formation free energy
化合物 吉布斯自由能G/(J·mol−1) FeAl2 −81 642 + 10.75T Fe2Al5 −201 636 + 42.43T FeAl3 −111 368 + 16.9T Fe3Si −84 992 − 24.28T Fe5Si3 −244 509 − 31.96T FeSi −80 387 + 3.86T FeSi2 −80 387 + 0.23T -
[1] Yang Ming, Ma Honghao, Shen Zhaowu, et al. Microstructure and mechanical properties of Al-Fe meshing bonding interfaces manufactured by explosive welding[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(4): 680 − 691. doi: 10.1016/S1003-6326(19)64978-2
[2] Chen Nannan, Wang Min, Wang Huiping, et al. Microstructural and mechanical evolution of Al/steel interface with Fe2Al5 growth in resistance spot welding of aluminum to steel[J]. Journal of Manufacturing Processes, 2018, 34(8): 424 − 434.
[3] Pasqualino Corigliano, Vincenzo Crupi, Eugenio Guglielmino, et al. Full-field analysis of Al/Fe explosive welded joints for shipbuilding applications[J]. Marine Structures, 2018, 57(1): 207 − 218.
[4] Yu Shurong, Shi Yu, Wang Ziyi, et al. Effects of powder on microstructure, tensile, and corrosion behavior of aluminum-steel joints[J]. Journal of Laser Applications, 2018, 30(3): 032006. doi: 10.2351/1.5043274
[5] 刘敏, 曹鹏, 张丽娜, 等. LD10铝合金与C6不锈钢真空扩散焊接 工艺研究[J]. 航天制造技术, 2019(4): 48 − 52, 56. doi: 10.3969/j.issn.1674-5108.2019.04.011 Liu Min, Cao Peng, Zhang, Lina, et al. Study on vacuum diffusion welding between LD10 aluminum alloy and C6 stainless steel[J]. Aerospace Manufacturing Technology, 2019(4): 48 − 52, 56. doi: 10.3969/j.issn.1674-5108.2019.04.011
[6] Narsimhachary D, Dutta K, Shariff S M, et al. Mechanical and microstructural characterization of laser weld-brazed AA6082-galvanized steel joint[J]. Journal of Materials Processing Technology, 2019, 263: 21 − 32. doi: 10.1016/j.jmatprotec.2018.08.002
[7] 余淑荣, 蒋锴, 樊丁. 5056铝合金/镀锌钢预置涂粉激光熔钎焊组织及性能研究[J]. 机械工程学报, 2014, 50(12): 83 − 88. doi: 10.3901/JME.2014.12.083 Yu Shurong, Jiang Kai, Fan Ding. 5056 aluminum alloy and coated steel overlapped fusion welding-brazing by laser with preset filler powder[J]. Journal of Mechanical Engineering, 2014, 50(12): 83 − 88. doi: 10.3901/JME.2014.12.083
[8] Tian Deyong, Yan Tingyan, Gao Qiyu, et al. Thermal cycle and its influence on the microstructure of laser welded butt joint of 8 mm thick Ti-6Al-4V alloy[J].China Welding, 2019, 28(3): 61 − 66.
[9] Ma Junjie, Harooni M, Carlson B, et al. Dissimilar joining of galvanized high-strength steel to aluminum alloy in a zero-gap lap joint configuration by two-pass laser welding[J]. Materials and Design, 2014, 58(6): 390 − 401.
[10] Zhang Yueying, Sun Daqian, Su Lei, et al. Effect of electrode morphology on steel/aluminum alloy joint[J]. China Welding, 2019, 28(1): 16 − 27.
[11] 葛佳棋,王克鸣,周琦,等. 7A52 铝合金−钢异种结构CMT熔钎焊接头组织及镀镍层的行为与影响[J]. 焊接学报, 2016, 37(4): 24 − 28. Ge Jiaqi, Wang Keming, Zhou Qi, et al. Study on CMT welding-brazing joint microstructure of 7A52 Al alloy-steel stud and influence of Ni coating[J]. Transactions of the China Welding Institution, 2016, 37(4): 24 − 28.
[12] Lee H W, Sung J H. Effect of weld metal copper content on HAZ cracking in austenitic stainless steel welded with Al brass[J]. Science and Technology of Welding and Joining, 2005, 10(2): 145 − 148. doi: 10.1179/174329305X29573
[13] Marcin W, Aleksandra M, Marcin K, et al. Aluminium to steel resistance spot welding with cold sprayed interlayer[J]. Surface Engineering, 2018, 34(3): 235 − 242. doi: 10.1080/02670844.2016.1271579
[14] Zhang Ke, Kokawa H, Li Zhuguo, et al. Enhanced strength of 304 SS-Ti6Al4V laser-welded joints containing composite interlayers[J]. Journal of Materials Engineering and Performance, 2018, 27(11): 6135 − 6148. doi: 10.1007/s11665-018-3634-x
[15] 李春玲, 樊丁, 于晓全, 等. 铝/镀锌钢电弧辅助激光涂粉填丝熔钎焊方法[J]. 中国激光, 2016, 43(7): 125 − 132. Li Chunling, Fan Ding, Yu Xiaoquan, et al. Method of arc-assisted laser wire welding-brazing between aluminum and galvanized steel with filler powder[J]. Chinese Journal of Lasers, 2016, 43(7): 125 − 132.
[16] 周惦武, 刘金水, 卢源志, 等. 添加Si粉激光深熔焊钢/铝接头 的显微组织与性能[J]. 机械工程学报, 2018, 54(14): 58 − 65. Zhou Dianwu, Liu Jinshui, Lu Yuanzhi, et al. Microstructure and mechanical properties of deep penetration laser welding joints in steel/aluminum with Si powder addition[J]. Journal of Mechanical Engineering, 2018, 54(14): 58 − 65.
[17] Pouranvari M, Abbasi M. Dissimilar gas tungsten arc weld-brazing of Al/steel using Al-Si filler metal: Microstructure and strengthening mechanisms[J]. Journal of Alloys and Compounds, 2018, 749: 121 − 127.
[18] 王晓虹, 谷晓燕, 孙大千. 钢/铝异种金属激光焊接头界面特性的研究[J]. 机械工程学报, 2017, 53(4): 26 − 33. doi: 10.3901/JME.2017.04.026 Wang Xiaohong, Gu Xiaoyan, Sun Daqian. Research on interface characteristic of laser welding joints of steel/aluminum dissimilar materials[J]. Journal of Mechanical Engineering, 2017, 53(4): 26 − 33. doi: 10.3901/JME.2017.04.026
-
期刊类型引用(6)
1. 孔祥霞,翟军军,孙凤莲. 电子封装用低银Sn-0.3Ag-0.7Cu钎料研究进展. 机械工程学报. 2022(12): 39-54 . 百度学术
2. 寇璐璐,曲文卿,庄鸿寿. 微量元素对Sn–3.5Ag–0.7Cu钎料性能的影响. 航空制造技术. 2020(08): 87-92 . 百度学术
3. 刘霜,薛松柏. Nd对Sn-0.7Cu-0.05Ni焊点组织与力学性能的影响. 焊接学报. 2020(01): 50-54+100 . 本站查看
4. 赵玲彦,滕媛,陈希,陈东东,卢红波,严继康,白海龙. Ce含量对SnAg0.1Cu0.7无铅焊料合金性能的影响. 有色金属工程. 2020(09): 25-29 . 百度学术
5. 张春红,张宁,耿德英. Sn-1.0Ag-0.5Cu-0.06Sm无铅钎料的蠕变性能研究. 特种铸造及有色合金. 2020(11): 1302-1306 . 百度学术
6. 姜楠,张亮,熊明月,赵猛,徐恺恺. 电子封装无铅软钎焊技术研究进展. 材料导报. 2019(23): 3862-3875 . 百度学术
其他类型引用(2)