Microstructure and properties of friction stir welded joints for 6061-T6/7075-T6 dissimilar aluminum alloy
-
摘要: 利用搅拌摩擦焊实现了2 mm厚7075-T6/6061-T6异种铝合金连接,并对材料放置位置和转速对接头成形与组织性能的影响进行了分析. 结果表明,7075-T6铝合金置于前进侧时更有利于焊接过程中材料的迁移行为,焊缝成形及接头性能更优.当焊接速度为150 mm/min、转速为1 000 r/min时,可获得内部无明显缺陷、外观良好的异种铝合金接头;相较于母材,热力影响区的小角度晶界含量增加,焊核区发生动态再结晶,小角度晶界转化为大角度晶界;接头拉伸性能随转速的增加,呈现先增加后减小的趋势.接头的平均抗拉强度和断后伸长率分别达到231 MPa和4.0%. 接头的断裂位置位于6061侧焊核区,与接头硬度最小位置相吻合.Abstract: Friction stir welding technique was applied to 2 mm thick 7075-T6/6061-T6 dissimilar aluminum alloys. The influence of rotating speed and material placement on the joint formation, microstructure and properties were studied. The results indicated that when the 7075-T6 aluminum alloy was placed on the advancing side, it is more conducive to material migration. The plates were joined successfully without welding defects and good surface formation when the welding speed is 150 mm/min and the rotating speed is 1000 r/min. Compared with the base metal, the thermo-mechanically affected zone had an increased content of low-angle boundaries. In the nugget zone, the low-angle boundaries converted to curve high-angle boundaries because of dynamic recrystallization. With the increase of rotating speed, the tensile properties of the joint firstly increased and then decreased. The ultimate tensile strength of the joint reached 231 MPa, and the elongation reached 4.0%. the fracture locations of the joints all located in the nugget zone at the 6061-T6 side, which coincided with the position with the minimum hardness.
-
-
图 15 接口的拉伸断口形貌
Figure 15. Tensile fracture morphologies of the joints. (a) overall morphology of the joints (50 mm/min,800 r/min); (b) distribution of the dimple feature 1 (50 mm/min,800 r/min);(c) distribution of the dimple feature 2 (50 mm/min,800 r/min);(d) overall morphology of the joints (50 mm/min,1 000 r/min); (c) distribution of the dimple feature (50 mm/min,1 000 r/min)
表 1 材料的化学成分(质量分数,%)
Table 1 Chemical compositions of the base materials
材料 Zn Mg Cu Mn Si Fe Ti Cr Al 6061 0.25 0.8 0.15 0.15 0.4 0.7 0.15 0.04 余量 7075 5.1 2.1 1.2 0.3 0.4 0.5 — 0.18 余量 表 2 材料的力学性能
Table 2 Mechanical properties of the base materials
材料 抗拉强度
Rm/MPa屈服强度
ReL/MPa断后伸长率
A(%)维氏硬度
H(HV)6061-T6 340 295 11.0 105 7075-T6 595 495 10.0 175 表 3 不同板材位置下接头的力学性能及断裂位置
Table 3 Mechanical properties and fracture locations of the joints at different plate positions
材料位置 抗拉强度
Rm/MPa断后伸长率
A(%)断裂位置 AS7075-RS6061 231 4.0 6061 SZ AS6061-RS7075 134 1.5 6061 SZ -
[1] 李桓, 徐光霈, 张宇辉, 等. 2219/5A06异种铝合金焊接接头组织与性能相关性[J]. 焊接学报, 2020, 41(9): 8 − 15. doi: 10.12073/j.hjxb.20200328001 Li Huan, Xu Guangpei, Zhang Yuhui, et al. Correlation between microstructure and properties of 2219/5A06 dissimilar aluminum alloy welded joint[J]. Transactions of the China Welding Institution, 2020, 41(9): 8 − 15. doi: 10.12073/j.hjxb.20200328001
[2] 张津, 计鹏飞, 周俊, 等. 轴肩尺寸对异种铝合金材料搅拌摩擦焊接头显微组织的影响规律[J]. 焊接学报, 2016, 37(11): 51 − 54. Zhang Jin, Ji Pengfei, Zhou Jun, et al. Effect of shoulder diameter on microstructure of dissimilar Al alloys friction stir welding joint[J]. Transactions of the China Welding Institution, 2016, 37(11): 51 − 54.
[3] 郑敏, 申志康, 杨新岐, 等. 异种铝合金回填式搅拌摩擦点焊缺陷及力学性能[J]. 焊接学报, 2016, 37(8): 87 − 90. Zheng Min, Shen Zhikang, Yang Xinqi, et al. Defects and mechanical properties of refill friction stir spot welded joint of dissimilar aluminum alloys[J]. Transactions of the China Welding Institution, 2016, 37(8): 87 − 90.
[4] Ma Z W, Li Q H, Ma L, et al. Process parameters optimization of friction stir welding of 6005A-T6 aluminum alloy using taguchi technique[J]. Transactions of the Indian Institute of Metals, 2019, 72(7): 1721 − 1731. doi: 10.1007/s12666-019-01639-7
[5] 姜贤峰. 2AL2铝合金搅拌摩擦焊研究[J]. 农机使用与维修, 2019(3): 25. Jiang Xianfeng. Study on friction stir welding of 2AL2 aluminum alloy[J]. Farm Machinery Using & Maintenance, 2019(3): 25.
[6] Doley J K, Kore S D. A study on friction stir welding of dissimilar thin sheets of aluminum alloys AA5052–AA6061[J]. Journal of Manufacturing Science and Engineering-transactions of the Asme, 2016, 138(11): 114502. doi: 10.1115/1.4033691
[7] 韩丽娟, 薛根奇, 郭福军, 等. 5083/5052异种铝合金搅拌摩擦焊接头组织及力学性能[J]. 热加工工艺, 2016, 45(11): 236 − 238, 241. Han Lijuan, Xue Genqi, Guo Fujun, et al. Microstructure and properties of friction stir welding joint of dissimilar 5083 and 5052 aluminum alloy[J]. Hot Working Technology, 2016, 45(11): 236 − 238, 241.
[8] Guo J F, Chen H C, Sun C N, et al. Friction stir welding of dissimilar materials between AA6061 and AA7075 Al alloys effects of process parameters[J]. Materials & Design, 2014, 56(4): 185 − 192.
[9] Yu C, Hua D, Cai Z, et al. Microstructural and mechanical characterization of a dissimilar friction stir-welded AA5083-AA7B04 butt joint[J]. Journal of Intelligent Manufacturing, 2016, 26(2): 1 − 10.
[10] 佘思越, 张德芬, 韩金理, 等. 2A12/7075异种铝合金搅拌摩擦焊接头成形及力学性能[J]. 有色金属工程, 2019, 9(5): 17 − 22. doi: 10.3969/j.issn.2095-1744.2019.05.003 She Siyue, Zhang Defen, Han Jinli, et al. Forming and mechanical properties of dissimilar 2A12 and 7075 alloy joint by friction stir welding[J]. Nonferrous Metals, 2019, 9(5): 17 − 22. doi: 10.3969/j.issn.2095-1744.2019.05.003
[11] Xie G M, Ma Z Y, Geng L, et al. Microstructural evolution and mechanical properties of friction stir welded Mg-Zn-Y-Zr alloy[J]. Materials Science and Engineering A, 2007, 471(1-2): 63 − 68.
[12] Cho J H, Boyce D E, Dawson P R. Modeling strain hardening and texture evolution in friction stir welding of stainless steel[J]. Materials Science & Engineering A, 2015, 398(1-2): 146 − 163.
[13] Zhang C, Huang G, Cao Y, et al. On the microstructure and mechanical properties of similar and dissimilar AA7075 and AA2024 friction stir welding joints: Effect of rotational speed[J]. Journal of Manufacturing Processes, 2019, 37: 470 − 487. doi: 10.1016/j.jmapro.2018.12.014
[14] Taghiabadi R, Aria N. Statistical strength analysis of dissimilar AA2024-T6 and AA6061-T6 friction stir welded joints[J]. Journal of Materials Engineering & Performance, 2019, 28: 1822 − 1832.
-
期刊类型引用(5)
1. 樊景博,田祎,任鑫博. 基于计算机视觉技术的焊接机器人定位精度分析. 微型电脑应用. 2021(02): 15-17 . 百度学术
2. 肖文波,何银水,袁海涛,马国红. 镀锌钢GMAW焊缝成形特征与焊枪方向同步实时检测. 焊接学报. 2021(12): 78-82+101 . 本站查看
3. 陈继传. 工艺改进型料槽机器人焊接工作站. 科技风. 2020(11): 172 . 百度学术
4. 洪磊,杨小兰,王保升,吕东升. 基于球面均匀分布的焊接机器人TCP标定方法. 焊接学报. 2020(08): 14-21+98 . 本站查看
5. 杨秀芝,张锐,王兴东,蒋宇辉,王子涵. 基于PSD的薄板焊接坡口信号识别系统. 焊接. 2020(10): 28-33+62-63 . 百度学术
其他类型引用(3)