Numerical simulation of heat and mass transfer and molten pool behavior of aluminum alloy by CMT and arc additive manufacturing
-
摘要:
为研究冷金属过渡(cold metal transition, CMT)电弧增材制造铝合金传热传质与熔池流动特性,基于Fluent软件建立了三维CMT电弧增材制造数值模型.模型中,采用动网格技术模拟焊丝竖直方向上的往复运动,利用流体体积法捕获气/液界面,焓−孔隙率法追踪固/液界面,并施加周期热量输入和阶段电弧力作用来等效电弧放电行为,研究分析了焊道成形传热传质过程与熔池动态行为.结果表明,焊道成形初期,熔池余高和坡度较大,形貌犹如半个球体,成形后期热量积累造成焊道余高后方较前方略小,而后端熔宽较前端略宽;单滴过渡周期内,焊丝机械回抽对熔池表面流动影响最为明显,液桥断裂产生较大反冲作用于熔池;熔池内部则是电磁力作为主导驱动力产生一股顺时针环流,环流随燃弧阶段周期切换而不断加强与减弱,并基本贯穿整个过渡周期,使得熔池内部热对流更加充分.模拟结果与试验结果显示吻合良好.
Abstract:In order to study the heat and mass transfer and molten pool flow characteristics of aluminum alloy by cold metal transition (CMT) and arc additive manufacturing, a three-dimensional numerical model for CMT arc additive manufacturing was established based on Fluent software. In the model, dynamic meshing technology is used to simulate the reciprocating motion of welding wires in the vertical direction. The volume of fluid method is used to capture the gas-liquid interface. The enthalpy-porosity method is used to track the solid-liquid interface, periodic heat input and stage arc force are applied to equivalent arc discharge behavior. The heat and mass transfer process of welding bead formation and the dynamic behavior of the molten pool are studied and analyzed. The results show that the residual height and slope of the weld pool are relatively large, and the morphology is like a half sphere in the early stage of weld bead forming. In the later stage of forming, the accumulation of heat causes the residual height behind the weld bead to be slightly smaller than the front, while the rear end melting width being slightly wider than the front end. During the single droplet transition period, the mechanical withdrawal of welding wire has the most significant impact on the surface flow of the molten pool, and the liquid bridge fracture produces a significant recoil effect on the molten pool. The electromagnetic force acts as the dominant driving force inside the molten pool to generate a clockwise circulation, which continuously strengthens and weakens with the cycle switching of the arc burning stage, and basically runs through the entire transition period, making the thermal convection inside the molten pool more complete. The simulation results are in good agreement with the experimental results.
-
-
表 1 模型边界条件
Table 1 Model boundary condition
边界 类型 流体速度V/(m·s−1) 温度T/K 压力P/Pa 面1 速度入口 ${V}_{ {\rm{d} } },{V}_{ {\rm{u} } }$ 1506 — 面2 壁面 0 1500 — 面3 速度入口 ${V_{{\rm{gas}}} }$ 300 — ADLI,DCGH,BCGF 压力出口 — $\dfrac{ {\partial T} }{ {\partial n} } = 0$ 101 325 FGKJ 速度入口 $ v $ 300 — HGKL,IJKL 壁面 0 ${q_{_\rm{loss} } }$ — ABJI 对称面 — — — 表 2 金属材料物性参数[16]
Table 2 Physical property parameters of metal materials
密度$ \rho $/
(kg·m−3)液相线
$ {T_{\rm{l}}} $/K固相线
$ {T_{\rm{s}}} $/K热导率$ k $/
(W·m−1∙K−1)粘度$ \mu $/
(kg·m−1∙s−1)比热容${c_{\rm{p}}}$/
(J∙kg−1∙K−1)对流换热
系数${h_{\rm{c}}}$/
(W·m−2∙K−1)表面张力
系数$ \gamma $/
(N·m−1)表面张力
梯度$ \partial \gamma {\text{/}}\partial T $/
(10−4 N·m−1∙K−1)热膨胀
系数
$ \beta $/10−5 K−1真空磁
导率$ {\mu _m} $/
(10−6 H·m−1)熔化潜
热$ L $/
(105 J·kg−1)辐射
系数
$ \varepsilon $2700 845 796 温度相关 温度相关 温度相关 80 0.845 −3.5 4.95 1.256 4 0.35 表 3 工艺参数
Table 3 Process parameters
送丝速度${V_{\rm{w}}}$/(m·min−1) 焊接速度$ v $/(cm·min−1) 保护气流量${Q_{\rm{A}}}$/(L·min−1) 5 42 18 表 4 焊道截面尺寸对比
Table 4 Comparison of weld section size
结果 熔宽d/mm 余高d1/mm 熔深d2/mm 模拟值 8.0 2.8 1.5 试验值 7.8 2.9 1.3 -
[1] 胡彪, 邓劲莲, 蔡高参, 等. 冷金属过渡电弧增材制造技术研究进展[J]. 机电工程, 2022, 39(3): 375 − 381. doi: 10.3969/j.issn.1001-4551.2022.03.014 Hu Biao, Deng Jinlian, Cai Gaoshen, et al. Research progress of CMT wire arc additive manufacturing technology[J]. Journal of Mechanical & Electrical Engineering, 2022, 39(3): 375 − 381. doi: 10.3969/j.issn.1001-4551.2022.03.014
[2] 李静, 许燕, 周建平, 等. 电弧增材制造中传热与流体流动的三维数值模拟[J]. 热加工工艺, 2023(10): 1 − 5. Li Jing, Xu Yan, Zhou Jianping, et al. Three-dimensional numerical simulation of heat transfer and fluid flow in arc additive manufacturing[J]. Hot Working Technology, 2023(10): 1 − 5.
[3] Chen X, Wang C, Ding J, et al. A three-dimensional wire-feeding model for heat and metal transfer, fluid flow, and bead shape in wire plasma arc additive manufacturing[J]. Journal of Manufacturing Processes, 2022, 83: 300 − 312. doi: 10.1016/j.jmapro.2022.09.012
[4] 赵文勇, 曹熙勇, 杜心伟, 等. CMT电弧增材制造过程传热传质数值模拟[J]. 机械工程学报, 2022, 58(1): 267 − 276. doi: 10.3901/JME.2022.01.267 Zhao Wenyong, Cao Xiyong, Du Xinwei, et al. Numerical simulation of heat and mass transfer in CMT-based additive manufacturing[J]. Journal of Mechanical Engineering, 2022, 58(1): 267 − 276. doi: 10.3901/JME.2022.01.267
[5] 何俊杰, 马瑞杨, 王天琪. 镁合金冷金属过渡熔池动态行为数值模拟[J]. 材料科学与工艺, 2022, 30(5): 18 − 26. He Junjie, Ma Ruiyang, Wang Tianqi. Numerical simulation of dynamic behavior of magnesium alloy cold metal transition molten pool[J]. Materials Science and Technology, 2022, 30(5): 18 − 26.
[6] 张志强, 勾青泽, 路学成, 等. 高强铝合金CMT + P电弧增材制造熔滴过渡行为[J]. 航空学报, 2023, 44(13): 255 − 266. Zhang Zhiqiang, Gou Qingze, Lu Xuecheng, et al. Droplet transfer behavior of high strength aluminum alloy CMT + P arc additive manufacturing[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13): 255 − 266.
[7] 吕飞阅, 王磊磊, 高转妮, 等. CMT电弧增材制造过程电弧特性对熔滴过渡行为的影响机理研究[J]. 机械工程学报, 2023, 59(15): 267 − 281. doi: 10.3901/JME.2023.15.267 Lü Feiyue, Wang Leilei, Gao Zhuanni, et al. Influence mechanism of arc characteristics on droplet transfer behavior in CMT-based additive manufacturing[J]. Journal of Mechanical Engineering, 2023, 59(15): 267 − 281. doi: 10.3901/JME.2023.15.267
[8] Cadiou S, Courtois M, Carin M, et al. 3D heat transfer, fluid flow and electromagnetic model for cold metal transfer wire arc additive manufacturing (Cmt-Waam)[J]. Additive Manufacturing, 2020, 36: 101541. doi: 10.1016/j.addma.2020.101541
[9] Wang L, Chen J, Zhang S, et al. Numerical simulation of coupled arc-droplet-weld pool behaviors during compound magnetic field assisted gas metal arc welding[J]. AIP Advances, 2021, 11(6): 65221. doi: 10.1063/5.0049461
[10] Ikram A, Chung H. Numerical simulation of arc, metal transfer and its impingement on weld pool in variable polarity gas metal arc welding[J]. Journal of Manufacturing Processes, 2021, 64: 1529 − 1543. doi: 10.1016/j.jmapro.2021.03.001
[11] 李俐群, 何平, 宫建锋. 铝合金激光-MIG复合焊熔滴对匙孔作用的模拟[J]. 焊接学报, 2022, 43(8): 1 − 7. doi: 10.12073/j.hjxb.20220304002 Li Liqun, He Ping, Gong Jianfeng. Simulation analysis of droplet action on keyhole during laser-MIG composite welding of aluminum alloy[J]. Transactions of the China Welding Institution, 2022, 43(8): 1 − 7. doi: 10.12073/j.hjxb.20220304002
[12] Hu Z, Hua L, Qin X, et al. Molten pool behaviors and forming appearance of robotic GMAW on complex surface with various welding positions[J]. Journal of Manufacturing Processes, 2021, 64: 1359 − 1376. doi: 10.1016/j.jmapro.2021.02.061
[13] Bai X, Colegrove P, Ding J, et al. Numerical analysis of heat transfer and fluid flow in multilayer deposition of PAW-based wire and arc additive manufacturing[J]. International Journal of Heat and Mass Transfer, 2018, 124: 504 − 516. doi: 10.1016/j.ijheatmasstransfer.2018.03.085
[14] Zhao W, Wei Y, Long J, et al. Modeling and simulation of heat transfer, fluid flow and geometry morphology in GMAW-based wire arc additive manufacturing[J]. Welding in the World, 2021, 65: 1571 − 1590. doi: 10.1007/s40194-021-01123-1
[15] 周祥曼, 王礴允, 袁有录, 等. 焊接速度对电弧增材熔池流动及焊道形貌影响的数值模拟研究[J]. 机械工程学报, 2022, 58(10): 103 − 111. doi: 10.3901/JME.2022.10.103 Zhou Xiangman, Wang Boyun, Yuan Youlu, et al. Numerical simulation study of the effects of travel speed on the molten pool flow and weld bead morphology of WAAM[J]. Journal of Mechanical Engineering, 2022, 58(10): 103 − 111. doi: 10.3901/JME.2022.10.103
[16] 王璐璐. 铝合金P-GMAW电弧-熔池多因素耦合行为及机制[D]. 上海: 上海交通大学, 2015. Wang Lulu. The coupling mechanism and behaviors of arc-molten pool under multifactors during P-GMAW process for aluminum alloy[D]. Shanghai: Shanghai Jiao Tong University, 2015.
[17] Zhao W, Tashiro S, Murphy A B, et al. Deepening the understanding of arc characteristics and metal properties in GMAW-based WAAM with wire retraction via a multi-physics model[J]. Journal of Manufacturing Processes, 2023, 97: 260. doi: 10.1016/j.jmapro.2023.05.008
-
期刊类型引用(1)
1. 朱明,祁先刚,张宗智,石玗. 采用激光预置铜层钛钢接头成形与组织. 焊接学报. 2025(03): 18-26+88 . 本站查看
其他类型引用(0)