Research progress and prospect of numerical simulation of deposit morphology control in solid-state cold spray additive manufacturing
-
摘要: 冷喷涂固态增材制造技术因其沉积效率高、喷涂速度快、热影响小等优点,逐渐成为各国研究热点. 但由于沉积原理与目前发展较为成熟的传统激光增材制造技术具有显著不同,沉积体的形貌控制成为了限制其应用的难点. 基于现有的冷喷涂条件对沉积体形貌影响的研究结果,结果表明,数值模拟成为了形貌预测与控制的主要方法. 因此,综述了冷喷涂沉积体形貌预测的不同数值模拟方法,总结了各个方法的特点,最后对冷喷涂沉积体形貌模拟的现存难题及未来发展方向进行了展望.Abstract: Solid-state cold spray additive manufacturing (CSAM) technology has become increasing hot in research among many countries for its high deposition efficiency, fast deposition speed and low thermal effect. Since the deposition method of CSAM is quite different with that of the traditionally laser additive manufacturing , the control of the deposit morphology has become a major task in the application of the technology. Based on the current conditions, numerical simulation methods have been carried out to study the effect of cold spray on the morphology of deposition. The results show that numercial simulation is a good way to predict and control the deposit morphology. In this paper, various simulation methods were proposed to predict the depositon morphology of CSAM and the characteristic of each method were summarized. Finally, challenges at present and prospect of the simulation of CSAM deposit morphology were proposed.
-
0. 序言
随着油气资源勘探领域向更深、更冷的海域拓展,海工装备长期工作在恶劣环境,经受流冰、地震、海洋风暴、潮汐、以及严寒、低温侵袭,因此对海洋结构材料(包括焊接材料)的强度、韧性、耐腐蚀、抗疲劳提出了更高的要求[1].从减少制造成本,提高焊接接头质量和焊接工艺效率的角度出发,埋弧焊(SAW)、电渣焊(ESW)、垂直电弧焊(EGW)等单道次焊接的高热量输入焊接(HHIW)技术得到快速的发展[2].目前在420 MPa级别的海工钢焊接中,国内外已开发出Si-Mn,Si-Mn-Ni和Si-Mn-Ti-B三种合金系的埋弧焊材.但是大热输入条件下的埋弧焊接接头的低温韧性往往成为结构件的使用瓶颈.目前国内的埋弧焊接材料,特别是应用于海洋工程和压力容器等对低温韧性要求高的焊接材料,通常因为低温韧性、质量稳定性等方面无法满足要求,而仍需依赖进口.
针对420 MPa级别的低合金高强度海工钢,开发了匹配的埋弧焊焊丝和焊剂.通过对 EH36 钢进行热输入分别为24,35 kJ/cm 的埋弧焊焊接,并对焊接接头组织和性能进行分析,为大热输入用钢和相应的焊接技术的发展提供了试验基础.
1. 试验方法
为了得到三种不同的合金系焊缝金属,使用直径4 mm的AWS EH14,AWS EM12K,GBH10Mn2 三种标准的焊丝搭配三种埋弧焊剂,母材选取的是EH36海工用钢. 焊丝和母材的化学成分如表1所示.采用24,35 kJ/cm 两种不同热输入进行施焊,焊接工艺参数见表1.焊丝和母材的化学成分如表2 所示.
表 1 焊接工艺参数Table 1. Welding parameter编号 电流I/A 电压U/V 焊接速度
v/(m·h−1)热输入
E/(kJ·cm−1)层间温度T/℃ E1 550 30 25 24 150 ± 10 E2 600 30 18.5 35 150 ± 10 参照美国焊接协会标准 AWS A5.17/5.17M分别对焊接接头进行取样,并按照国家标准GB 2651—89 进行拉伸试验,在−74 ~ 0 ℃范围进行冲击试验.维氏硬度是从顶层焊缝的柱状晶区测到重结晶区,试验位置详见图1.取焊缝整个截面制备金相试样,用体积分数 4%的硝酸酒精腐蚀.重结晶区的相比例在光镜500倍下测量,晶粒尺寸采用线截距法测得,使用带有EDS系统的扫描电镜(SEM)对冲击断面和夹杂物尺寸分布进行定性分析,用电子背散射衍射(EBSD)分析晶粒位相和晶界角度分布.
表 2 焊丝和母材的化学成分(质量分数,%)Table 2. Chemical compositions of base metal and core wire名称 牌号 C Si Mn S P Cr Ni Cu Al 母材 EH36 0.084 0.346 1.46 0.004 0.010 0.022 0.01 0.01 0.07 焊丝1 EH14 0.127 0.049 1.90 0.003 0.009 0.024 0.005 0.01 0.02 焊丝2 EM12K 0.128 0.229 1.05 0.007 0.01 0.021 0.003 0.02 0.02 焊丝3 EM13 0.059 0.114 1.03 0.005 0.008 0.011 3.18 0.05 0.01 2. 试验结果和讨论
2.1 焊缝金属化学成分和组织分析
不同焊缝金属试样的化学成分如表3所示,编号由合金元素和热输入组成,E1为24 kJ/cm,E2为35 kJ/cm,且Si-Mn,Si-Mn-Ni和Si-Mn-Ti-B三种合金系焊缝金属的化学成分与设计值基本一致.由表3可知,不同的热输入下,这三种合金系焊缝金属的化学成分基本不变.表明在24 ~ 35 kJ/cm的热输入范围内,由这三种焊材得到的焊缝金属化学成分均很稳定,没有造成合金元素的烧损.
表 3 熔敷金属的化学成分(质量分数,%)Table 3. Chemical compositions of deposited metals编号 C Si Mn S P Ni Al Ti B O N MnE1 0.055 0.33 0.98 0.003 0.017 0.039 0.02 0.009 0.001 277 × 10−4 37 × 10−4 MnE2 0.079 0.31 1.06 0.005 0.015 0.105 0.02 0.011 0.001 277 × 10−4 30 × 10−4 NiE1 0.059 0.13 1.2 0.006 0.018 3.01 0.01 0.008 0.002 289 × 10−4 39 × 10−4 NiE2 0.060 0.13 1.22 0.006 0.018 2.91 0.01 0.009 0.002 252 × 10−4 33 × 10−4 TiE1 0.118 0.19 1.45 0.004 0.016 0.037 0.01 0.022 0.003 297 × 10−4 61 × 10−4 TiE2 0.087 0;.16 1.42 0.004 0.018 0.071 0.01 0.021 0.004 348 × 10−4 52 × 10−4 图2给出了MnE1的末道焊缝的显微组织,焊缝组织主要由大量晶内分布的针状铁素体(αa),沿原奥氏体晶界分布的先共析铁素体(α),从原奥氏体晶界向晶内扩展的呈羽毛状的侧板条铁素体(SPF)和少量的珠光体(P),粒状贝氏体(GB),马奥组元(MA)等组成[3].
图3为六种试样盖面焊缝针状铁素体的体积分数.从图3中不难看出三种合金系焊缝中,Si-Mn-Ti-B系针状铁素体所占比例(~ 94%)最大,先共析铁素体含量几乎为零,而Si-Mn系的先共析铁素体尺寸和比例(~ 50%)最大,并且提高热输入之后,前者组织类型和比例均无明显变化.相反,Si-Mn系的先共析铁素体由于冷却速度变慢而显著变粗大,针状体素体的占比也有所下降.相较于前两者,增加热输入,Si-Mn-Ni系焊缝的先共析铁素体比例变化不大,而是形状发生明显的变化,由长条状分解呈片层状,且其间析出具有一定的方向性的粒状贝氏体.
已有研究可知,焊缝组织中AF的含量与合金成分、氧含量,冷却速度和夹杂物尺寸分布有关.如图4,增加Mn,Ni等合金成分,会增加焊缝金属的淬透性,从而使CCT曲线向右移动,相同冷却速度条件下,Si-Mn-Ni系和Si-Mn-Ti-B系合金的AF比例会多于Si-Mn系焊缝[4].此外,同一种合金系焊缝增加热输入,会降低焊缝的冷却速度,进而原奥氏体边界生成的先共析铁素体长大,其边界析出更多的贝氏体或者珠光体,且AF的含量有所降低,十分吻合图4所得出的试验结果.
如图1白色框线所示,熔敷金属的重结晶区可以依次细分为粗晶区(CG)、细晶区(FG)和临界区(IC)[5-6].图5为图2中重结晶区的500倍光镜图,细致地展现了重结晶区的3个分区(黑线—黄线:CG;黄线—蓝线:FG;蓝线—红线:IC).在相同热输入下,三种合金系的焊缝金属的重结晶区域总深度数值相近,但随着热输入的增加,熔深增加,重结晶区深度也随之增大.其中,CG和FG的深度并无清晰的变化趋势,反而是IC的宽度是和热输入呈正相关关系[6].
图6为六种焊缝金属FG的500倍光学显微组织,图6b,6d,6f中黄色组织分别为热输入35 kJ/cm时的各自焊缝金属中的第二相,图6a, 6c, 6e右上方的3 000倍电镜图分别展示了三种合金系焊缝金属第二相的组织形态,Si-Mn系和Si-Mn-Ti-B系的第二相都是脆性的P和浮岛状的MA,而Si-Mn-Ni系的是细小弥散的GB[7]. 另外从图6中可以看出,不同热输入下的Si-Mn系和Si-Mn-Ti-B系组织类型基本没有变化,都是由大量块状多边形铁素体和少量第二相构成,但是脆性的P含量随着热输入的增加有所增加(表4):Si-Mn系由12.4%增加到15.5%,Si-Mn-Ti-B系由13.2%增加到15.7%.而增加热输入后,Si-Mn-Ni系组织形状发生改变,由大部分无定形铁素体和在其边界分布的细小的弥散GB组成,因此FG的晶粒尺寸不方便测量,但是仍可发现高热输入的尺寸比低热输入的多边形铁素体较大,且弥散的GB沿着无定形铁素体条方向性分布.此外,从表4还可得知,随着热输入的增加,高温停留时间延长,焊缝的冷却速度减缓,晶粒显著长大,晶粒尺寸大约增加了50%.
表 4 重结晶区的组织和晶粒尺寸Table 4. Microconstituents and grain size in reheated zone编号 热输入E/(kJ·cm−1) 第二相比例Δ(%) FG晶粒尺寸d/μm CG宽度W1/μm FG宽度W2/μm IC宽度W3/μm 重结晶区宽度W/μm MnE1 24 12.4 5.2 90.4 102.1 49.9 242.4 MnE2 35 15.5 7.9 69.0 163.7 53.6 286.3 NiE1 24 14.4 7.0 64.4 157.9 40.1 262.4 NiE2 35 — — 64.1 133.9 67.3 274.3 TiE1 24 13.2 4.0 71.4 125.6 27.0 224.0 TiE2 35 15.7 6.2 75.8 182.2 32.6 290.6 2.2 夹杂物的形态和尺寸分布
在金相显微镜500倍的镜头下,选择5个夹杂物数量最多的视场对焊缝中的夹杂物进行统计分析,得到的结果如表5所示.由表5可知,随着热输入增加,三种合金系焊缝的夹杂物平均尺寸都增加0.3 μm左右,数量和面密度都减小[7].这主要是由于焊接热输入增加,熔池金属高温下停留的时间延长,冷却速度减缓,夹杂物以高温更稳定的析出氧化物为主,元素都向该类氧化为扩散聚集,从而尺寸增大;而高温不稳定的夹杂物数量减少,从而夹杂物的数量和面密度下降.
表 5 不同热输入下焊缝中夹杂物的大小和分布Table 5. Size and distribution of inclusion in the weld metal in different heat input编号 热输入E/(kJ·cm−1) 平均尺寸D/μm 面密度ρ/(个·mm−2) 夹杂物总个数Z MnE1 24 0.62 9 552 363 MnE2 35 0.66 6 342 241 NiE1 24 0.59 8 947 340 NiE2 35 0.62 7 447 283 TiE1 24 0.61 14 816 563 TiE2 35 0.63 14 394 547 夹杂物的尺寸分布,形态和化学成分均能很大程度的影响AF的含量和形态[4].扫描电镜下观察到的夹杂物如图7所示.可发现夹杂物在多个AF的针状端部,即为多个AF的形核质点[8-9]. 图7b为夹杂物的能谱分析,夹杂物含有Si, Mn, Ti, Al, Ca 和 Mg 等的元素,由于Si, Ti, Al, Ca 和 Mg 等的元素的氧化物熔点较高,率先从高温液态金属中析出,成为AF的形核质点[7].
2.3 力学性能
2.3.1 硬度和拉伸性能
图8给出了焊缝4个区域的硬度值和拉伸力学性能,可知增加热输入,除了Si-Mn-Ni系的每个区域硬度值增加了30 HV外,另外两种合金系并无显著变化.这是因为Si-Mn-Ni系的组织形态发生了变化,生成了大量的弥散GB和无定形铁素体,而另外两种组织类型无变化.由于CG和IC的晶粒尺寸相近,所以在同一种合金系中,从WM到FG硬度值递减,而IC的硬度值和CG的值相差无几.而三种合金系的拉伸性能均随着热输入的增加而恶化,这是由于再热区深度增加,晶粒尺寸增大,致使强度有所降低.
2.3.2 焊缝金属冲击吸收能量
图9为三种合金系焊缝在不同热输入下从−80 ~ 0 ℃的焊缝中心冲击吸收能量曲线.在−60 ℃时,六种试件的冲击吸收能量均大于100 J,远远大于船级社焊接接头−40 ℃满足47 J的要求.这主要是由于这些焊件都满足了合金化和纯净化的要求.首先,氧含量均在400 × 10−6以下,且氮含量也处于降低水平,达到了焊缝得到最佳冲击韧性的要求.其次,三种合金系的Si-Mn,Si-Mn-Ni和Si-Mn-Ti-B的元素配比达到最佳.
从图9中可知,每一种合金系在提高热输入之后,冲击韧性均有所恶化.Si-Mn-Ni系和Si-Mn-Ti-B系每一个温度下的冲击值都降低,但是都没有到达脆性转变温度(DBTT),且Si-Mn-Ti-B系冲击吸收能量下降的幅度较小,表明Si-Mn-Ti-B系对热输入的适应性更广.而Si-Mn系合金的DBTT由−70 ℃下降到−65 ℃,表明Si-Mn系焊缝对大热输入最不适应,最佳热输入范围较窄.
图10给出了FG和IC的EBSD反极图和晶界图,右上角为箭头方向的晶界尺寸分布图.除了FG的晶粒尺寸比IC小之外,FG的大角度晶界(15° ~ 180°)的角度和密度都远大于IC.因此IC便于裂纹的扩展,为韧性薄弱区[10],而且热输入增大后,AF比例降低,P, MA等脆性第二相含量增多,且重结晶区的深度和晶粒尺寸也随之增加(表4),因此提高热输入,增加了裂纹的萌生位置,且提供了更多裂纹扩展的路径,恶化了韧性. 图11给出了冲击端口截面组织,可看出冲击断口是沿晶断裂,二次裂纹是在P等脆性第二相处萌生,并沿着小角度晶界的大尺寸晶粒扩展.因此,减小晶粒尺寸,增大晶界角度,可有效的阻碍裂纹的扩展[10].
3. 结论
(1) 焊缝柱状晶区组织均以AF为主,存在先共析铁素体和少量P,GB.随热输入增加,三种合金系的夹杂物的尺寸增大,数量和面密度减小.为AF形核长大提供的形核质点减少,降低AF含量,较另外两种合金系焊缝,Si-Mn-Ti-B系AF减少程度较低.
(2) 焊缝再热区为块状铁素体.但Si-Mn-Ni系合金焊缝,组织形态发生改变,生成大量呈方向性的弥散GB,使焊缝到再热区的硬度值基本无变化.且热输入增加,三种合金系重结晶区的IC深度也随之增加,析出的P,MA等脆性第二相含量增加3%.
(3) 随着热输入的增加,Si-Mn系合金焊缝,脆性转变温度由−70 ℃升高到−65 ℃,Si-Mn-Ni系和Si-Mn-Ti-B系焊缝冲击吸收能量分别降低37%,18%. 主要是因为增加热输入,脆性第二相含量增加,晶粒尺寸增大,为裂纹提供了萌生质点和扩展路径.
-
图 1 喷涂时瞬时沉积体形貌与温度分布[30]
Figure 1. Transient deposits profile and temperature distribution. (a) t = 3 s; (b) t = 6 s; (c) t = 8 s; (d) t = 9.6 s; (e) t = 14.6 s; (f) t = 33 s
图 3 凸起表面基体沉积[39]
Figure 3. Deposits on substrate convex angle. (a) deposits on substrate with 30° corner; (b) comparison of deposits profile under different spraying strategies
图 4 人工神经网络示意图[40]
Figure 4. Schematic diagram of ANN method
图 5 不同喷涂条件对沉积体形貌的影响[42]
Figure 5. Influence of different spraying conditions on the profile of deposit. (a) spraying angle; (b) traversing speed; (c) standoff distance
图 6 不同喷涂条件下沉积体实际形貌与人工神经网络法及高斯法模拟形貌对比[42]
Figure 6. Comparison of deposits profile between ANN method and Gaussian Model under different spraying conditions. (a) sample 37; (b) sample 39
图 7 不同喷涂角度下单点沉积体形貌轮廓试验结果与ANN方法模拟结果对比[45]
Figure 7. Profile comparison of single spot spraying deposit between experiments and ANN method at different spray angles. (a) spraying angle of 90°; (b) spraying angle of 80°; (c) spraying angle of 70°; (d) spraying angle of 60°
图 8 不同喷枪移动速度单道沉积体形貌轮廓实验结果与ANN方法模拟结果对比[45]
Figure 8. Comparison of deposits profile between experiments and ANN method under different traversing speed. (a) traversing speed 300 mm/s; (b) traversing speed 200 mm/s; (c) traversing speed 150 mm/s; (d) traversing speed 100 mm/s; (e) traversing speed 50 mm/s; (f) deposits thickness
图 9 不同喷涂角度沉积体形貌3D模拟[45]
Figure 9. 3D simulation of single spot deposit profile at different spray angles. (a) θ = 90°; (b) θ = 80°; (c) θ = 70°; (d) θ = 60°
图 10 沉积形貌预测流程[18]
Figure 10. Schematic diagram of depositing process. (a) planar creation of rays and intersection; (b) planar creation of cylinders; (c) planar single deposit profile; (d) non-planar creation of rays and intersection; (e) non-planar creation of cylinders; (f) non-planar single deposit profile
图 11 复杂曲面冷喷涂[18]
Figure 11. Complex surface spraying. (a) discrete single deposit profile while overlapping; (b) continuous single deposit profile on flat surface; (c) continuous single deposit profile on curved surface; (d) continuous single deposit profile on complex stair surface
图 12 阶梯状连续冷喷涂[18]
Figure 12. Continuous deposition on stair-like substrate with shadow effect. (a) actual profile; (b) simulation profile
图 13 喷涂角度为60°时沉积体形貌演化[52]
Figure 13. Profile evolution of 60° spray angle
图 14 阴影遮挡效应的实现[54]
Figure 14. Shadow effect. (a) geometric shape of the substrate; (b) schematic diagram of spraying; (c) comparison of profile after 20 passes; (d) cross-sectional view after 20 passes; (e) side view of deposits; (f) profile of deposits
表 1 不同方法特点对比
Table 1 Comparison of characteristics of different methods
特点 高斯法 ANN TST 克林科夫法 3D — — √ — 物理模型 √ — — √ 复杂曲面喷涂 — — √ — 形貌演变 — — √ √ 数据支撑 √ √ — — 试验验证 — √ √ √ 非空间对称颗粒分布 — — — — -
[1] Wong K V, Hernandez A. A review of additive manufacturing[J]. International Scholarly Research Notices, 2012, https://doi.org/10.5402/2012/208760.
[2] Dilberoglu U M, Gharehpapagh B, Yaman U, et al. The role of additive manufacturing in the era of industry 4.0[J]. Procedia Manufacturing, 2017, 11: 545 − 554. doi: 10.1016/j.promfg.2017.07.148
[3] 卢秉恒, 李涤尘. 增材制造(3D打印)技术发展[J]. 机械制造与自动化, 2013, 42(4): 1 − 4. Lu Binghuan, Li Dichen. Additive manufacturing (3D printing) technology development[J]. Machine Manufacturing and Automation, 2013, 42(4): 1 − 4.
[4] Gardner L. Metal additive manufacturing in structural engineering–review, advances, opportunities and outlook[J]. Structures, 2023, 47: 2178 − 2193. doi: 10.1016/j.istruc.2022.12.039
[5] Fu J, Li H, Song X, et al. Multi-scale defects in powder-based additively manufactured metals and alloys[J]. Journal of Materials Science and Technology, 2022, 122(20): 165 − 199.
[6] Li W, Yang K, Yin S, et al. Solid-state additive manufacturing and repairing by cold spraying: A review[J]. Journal of Materials Science and Technology, 2018, 34(3): 440 − 457. doi: 10.1016/j.jmst.2017.09.015
[7] Yin S, Cavaliere P, Aldwell B, et al. Cold spray additive manufacturing and repair: Fundamentals and applications[J]. Additive Manufacturing, 2018, 21: 628 − 650. doi: 10.1016/j.addma.2018.04.017
[8] Prashar G, Vasudev H. A comprehensive review on sustainable cold spray additive manufacturing: State of the art, challenges and future challenges[J]. Journal of Cleaner Production, 2021, 310: 127606. doi: 10.1016/j.jclepro.2021.127606
[9] Guo D, Kazasidis M, Hawkins A, et al. Cold spray: over 30 years of development toward a hot future[J]. Journal of Thermal Spray Technology, 2022, 31(4): 866 − 907. doi: 10.1007/s11666-022-01366-4
[10] Pattison J, Celotto S, Morgan R, et al. Cold gas dynamic manufacturing: A non-thermal approach to freeform fabrication[J]. International Journal of Machine Tools and Manufacture, 2007, 47(3-4): 627 − 634. doi: 10.1016/j.ijmachtools.2006.05.001
[11] Pathak S, Saha G C. Development of sustainable cold spray coatings and 3D additive manufacturing components for repair/manufacturing applications: A critical review[J]. Coatings, 2017, 7(8): 122. doi: 10.3390/coatings7080122
[12] Lynch M E, Gu W, El-Wardany T, et al. Design and topology/shape structural optimisation for additively manufactured cold sprayed components[J]. Virtual and Physical Prototyping, 2013, 8(3): 213 − 231. doi: 10.1080/17452759.2013.837629
[13] Villafuerte J. Considering cold spray for additive manufacturing[J]. Advanced Materials and Processes, 2014, 50: 50 − 52.
[14] Cai Z, Liang H, Quan S, et al. Computer-aided robot trajectory auto-generation strategy in thermal spraying[J]. Journal of Thermal Spray Technology, 2015, 24: 1235 − 1245. doi: 10.1007/s11666-015-0282-7
[15] Yanjun Z, Wenbo L, Dayu L, et al. Modeling of thickness and profile uniformity of thermally sprayed coatings deposited on cylinders[J]. Journal of Thermal Spray Technology, 2018, 27(3): 288 − 295. doi: 10.1007/s11666-017-0661-3
[16] Raoelison R, Verdy C, Liao H. Cold gas dynamic spray additive manufacturing today: Deposit possibilities, technological solutions and viable applications[J]. Materials & Design, 2017, 133: 266 − 287. doi: 10.1016/j.matdes.2017.07.067
[17] Sokore M, Wu H, Li W, et al. Perspective of 3D near-net-shape additive manufacturing by cold spraying: an empirical study using pure Al powders[C]//Thermal Spray 2022: Proceedings from the International Thermal Spray Conference (ITSC2022). ASM International, Vienna, Austria, 2022: 306 − 313.
[18] Wu H, Xie X, Liu M, et al. Stable layer-building strategy to enhance cold-spray-based additive manufacturing[J]. Additive Manufacturing, 2020, 35: 101356. doi: 10.1016/j.addma.2020.101356
[19] Chen C, Gojon S, Xie Y, et al. A novel spiral trajectory for damage component recovery with cold spray[J]. Surface and Coatings Technology, 2017, 309: 719 − 728. doi: 10.1016/j.surfcoat.2016.10.096
[20] Lewke M, Wu H, List A, et al. Integration of pre-machining geometries for repair application by cold spray[C]//2022 IEEE 5th International Conference on Industrial Cyber-Physical Systems (ICPS). IEEE, Coventry, UK, 2022: 1 − 6.
[21] Rech S, Trentin A, Vezzu S, et al. Different cold spray deposition strategies: single-and multi-layers to repair aluminium alloy components[J]. Journal of Thermal Spray Technology, 2014, 23: 1237 − 1250. doi: 10.1007/s11666-014-0141-y
[22] Borchers C, Gartner F, Stoltenhoff T, et al. Microstructural bonding features of cold sprayed face centered cubic metals[J]. Journal of Applied Physics, 2004, 96(8): 4288 − 4292. doi: 10.1063/1.1789278
[23] Yin S, Wang X F, Suo X K, et al. Deposition behavior of thermally softened copper particles in cold spraying[J]. Acta Materialia, 2013, 61(14): 5105 − 5118. doi: 10.1016/j.actamat.2013.04.041
[24] Assadi H, Kreye H, Gärtner F, et al. Cold spraying – A materials perspective[J]. Acta Materialia, 2016, 116: 382 − 407. doi: 10.1016/j.actamat.2016.06.034
[25] Li B, Yang L J, Li Z H, et al. Beneficial effects of synchronous laser irradiation on the characteristics of cold-sprayed copper coatings[J]. Journal of Thermal Spray Technology, 2015, 24(5): 836 − 847. doi: 10.1007/s11666-015-0246-y
[26] Li C J, Li W Y, Liao H L. Examination of the critical velocity for deposition of particles in cold spraying[J]. Journal of Thermal Spray Technology, 2006, 15(2): 212 − 222. doi: 10.1361/105996306X108093
[27] Seng D H L, Zhang Z, Zhang Z Q, et al. Influence of spray angle in cold spray deposition of Ti-6Al-4V coatings on Al6061-T6 substrates[J]. Surface and Coatings Technology, 2022, 432: 128068. doi: 10.1016/j.surfcoat.2021.128068
[28] Pathak S, Saha G C. Cold spray in the realm of additive manufacturing[M]. Germany: Springer, 2020.
[29] 王银安. 喷涂机器人自动轨迹规划方法研究[D]. 广州: 华南理工大学, 2021. Wang Yinan. Research on automatic trajectory planning of spraying robot[D]. Guangzhou: South China University of Technology, 2021.
[30] Chen C, Xie Y, Verdy C, et al. Numerical investigation of transient coating build-up and heat transfer in cold spray[J]. Surface and Coatings Technology, 2017, 326: 355 − 365. doi: 10.1016/j.surfcoat.2017.07.069
[31] 施栩, 李康, 汪绍鹏. 基于 Matlab 的喷涂机器人喷涂轨迹规划设计[J]. 机械研究与应用, 2019, 32(3): 12 − 16. Shi Xu, Li Kang, Wang Shaopeng. Spraying robot trajectory planning and design based on Matlab[J]. Mechanical Research and Application, 2019, 32(3): 12 − 16.
[32] 王战中, 杨晓博, 刘超颖, 等. 基于 MATLAB 的喷涂轨迹重叠率优化[J]. 机械设计与制造, 2012(2): 87 − 89. doi: 10.3969/j.issn.1001-3997.2012.02.034 Wang Zhanzhong, Yang Xiaobo, Liu Chaoying, et al. Optimization of spraying trajectory overlap rate based on MATLAB[J]. Mechanical Design and Manufacturing, 2012(2): 87 − 89. doi: 10.3969/j.issn.1001-3997.2012.02.034
[33] 吴洪键, 刘敏, 邓思豪, 等. 涂层厚度数学模型的建立及喷涂轨迹间距优化[J]. 热加工工艺, 2017(16): 128 − 132. doi: 10.14158/j.cnki.1001-3814.2017.16.032 Wu Hongjian, Liu Min, Deng Sihao, et al. Establishment of mathematical model of coating thickness and optimization of spraying track spacing[J]. Hot Working Technology, 2017(16): 128 − 132. doi: 10.14158/j.cnki.1001-3814.2017.16.032
[34] 董慧芬, 刘健健, 高爽笑. 机器人喷涂曲面涂层生长模型及均匀性分析[J]. 机械设计与制造, 2021(5): 246 − 250. doi: 10.3969/j.issn.1001-3997.2021.05.056 Dong Huifen, Liu Jianjian, Gao Shuangxiao. Growth model and uniformity analysis of robot spraying curved coating[J]. Mechanical Design and Manufacturing, 2021(5): 246 − 250. doi: 10.3969/j.issn.1001-3997.2021.05.056
[35] 冯浩, 吴秋, 王小平. 基于椭圆双 β 模型的球面喷涂轨迹优化[J]. 机械设计与制造, 2016(4): 249 − 252. doi: 10.3969/j.issn.1001-3997.2016.04.065 Feng Hao, Wu Qiu, Wang Xiaoping. Trajectory optimization of spherical spraying based on elliptic double β model[J]. Mechanical Design and Manufacturing, 2016(4): 249 − 252. doi: 10.3969/j.issn.1001-3997.2016.04.065
[36] 霍平, 徐帅, 魏来. 基于 MATLAB 曲面喷涂厚度仿真研究[J]. 机床与液压, 2019, 47(16): 162 − 165, 191. doi: 10.3969/j.issn.1001-3881.2019.16.035 Huo Ping, Xu Shuai, Wei Lai. Simulation of surface coating thickness based on MATLAB[J]. Machine Tools and Hydraulics, 2019, 47(16): 162 − 165, 191. doi: 10.3969/j.issn.1001-3881.2019.16.035
[37] Duncan S, Jones P, Wellstead P. A frequency-domain approach to determining the path separation for spray coating[J]. IEEE Transactions on Automation Science and Engineering, 2005, 2(3): 233 − 239. doi: 10.1109/TASE.2005.850393
[38] Tzinava M, Delibasis K, Allcock B, et al. A general-purpose spray coating deposition software simulator[J]. Surface and Coatings Technology, 2020, 399: 126148. doi: 10.1016/j.surfcoat.2020.126148
[39] Nault I M, Ferguson G D, Nardi A T. Multi-axis tool path optimization and deposition modeling for cold spray additive manufacturing[J]. Additive Manufacturing, 2021, 38: 101779. doi: 10.1016/j.addma.2020.101779
[40] Razavipour M, Legoux J G, Poirier D, et al. Artificial neural networks approach for hardness prediction of copper cold spray laser heat treated coatings[J]. Journal of Thermal Spray Technology, 2022, 31(3): 525 − 544. doi: 10.1007/s11666-021-01311-x
[41] Ikeuchi D, Vargas-Uscategui A, Wu X, et al. Data-efficient neural network for track profile modelling in cold spray additive manufacturing[J]. Applied Sciences, 2021, 11(4): 1654. doi: 10.3390/app11041654
[42] Ikeuchi D, Vargas-Uscategui A, Wu X, et al. Neural network modelling of track profile in cold spray additive manufacturing[J]. Materials, 2019, 12(17): 2827. doi: 10.3390/ma12172827
[43] Mahapatra M, Li L. Prediction of pulsed-laser powder deposits’ shape profiles using a back-propagation artificial neural network[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2008, 222(12): 1567 − 1576. doi: 10.1243/09544054JEM1228
[44] Xiong J, Zhang G, Hu J, et al. Bead geometry prediction for robotic GMAW-based rapid manufacturing through a neural network and a second-order regression analysis[J]. Journal of Intelligent Manufacturing, 2014, 25: 157 − 163. doi: 10.1007/s10845-012-0682-1
[45] Chen C, Xie Y, Verdy C, et al. Modelling of coating thickness distribution and its application in offline programming software[J]. Surface and Coatings Technology, 2017, 318: 315 − 325. doi: 10.1016/j.surfcoat.2016.10.044
[46] 董一萱, 王世杰, 王照智. 基于MPA-ANN的冷喷增材制造沉积建模与预测[J]. 计算机集成制造系统, 2022: 1 − 18. Dong Yixuan, Wang Shijie, Wang Zhaozhi. Modeling and prediction of deposition for cold spray additive manufacturing based on MPA-ANN[J]. Computer Integrated Manufacturing System, 2022: 1 − 18.
[47] Liu M, Wu H, Yu Z, et al. Description and prediction of multi-layer profile in cold spray using artificial neural networks[J]. Journal of Thermal Spray Technology, 2021, 30(6): 1453 − 1463. doi: 10.1007/s11666-021-01212-z
[48] Cai Z, Deng S, Liao H, et al. New method of generating robot trajectory on complex geometric workpiece[J]. DVS-Berichte, 2011: 1262 − 1266.
[49] Fang D, Deng S, Liao H, et al. Automatic generation of robot trajectory for free-form surfaces in thermal spraying[J]. DVS-Berichte, 2011, 276: 1110 − 1114.
[50] Deng S, Cai Z, Fang D, et al. Application of robot offline programming in thermal spraying[J]. Surface and Coatings Technology, 2012, 206(19): 3875 − 3882.
[51] Cai Z, Deng S, Liao H, et al. The effect of spray distance and scanning step on the coating thickness uniformity in cold spray process[J]. Journal of Thermal Spray Technology, 2014, 23(3): 354 − 362. doi: 10.1007/s11666-013-0002-0
[52] Klinkov S, Kosarev V, Ryashin N, et al. Influence of particle impact angle on formation of profile of single coating track during cold spraying[C]//AIP Conference Proceedings. AIP Publishing LLC, Los Angeles, USA, 2018, 2027(1): 020007.
[53] Klinkov S, Kosarev V, Shikalov V. Control of cold spray process by changing of nozzle setting angle[C]//AIP Conference Proceedings. AIP Publishing LLC, Los Angeles, USA, 2019, 2125(1): 020022.
[54] Vanerio D, Kondas J, Guagliano M, et al. 3D modelling of the deposit profile in cold spray additive manufacturing[J]. Journal of Manufacturing Processes, 2021, 67: 521 − 534. doi: 10.1016/j.jmapro.2021.05.013
-
期刊类型引用(20)
1. 王康龙,常云峰,刘晓芳,张陕南,付毅帅,薛行雁. 超高速激光熔覆耐腐蚀涂层研究进展. 电焊机. 2025(02): 85-94 . 百度学术
2. 武鹏博,冯志强,方乃文,路全彬,黄瑞生,廖志谦,孙徕博,秦建,黎泉,常云峰,牛董山钰. 厚壁钛合金激光填丝焊接接头组织性能及应力分析. 稀有金属材料与工程. 2025(02): 401-412 . 百度学术
3. 吴奇隆,赵宏伟,张雷,孙志鹏,李宇佳,程战,袁世成. 激光重熔对金刚石/镍基复合涂层组织性能的影响. 稀有金属材料与工程. 2025(02): 437-444 . 百度学术
4. 黄玲玲,钟素娟,孙元,胡晓勇,吕晓春,于华. Ni元素对B60AgCuSnIn钎料微观组织及接头性能的影响. 精密成形工程. 2025(03): 110-115 . 百度学术
5. 黎海兵,路全彬,黄俊兰,Renan Siqueira,丁宗业. 异种金属焊接结构件多轴动态力学性能测试平台设计. 精密成形工程. 2025(03): 31-40 . 百度学术
6. 龙伟民,乔瑞林,秦建,宋晓国,李鹏远,樊喜刚,刘代军. 异质材料钎焊技术与应用研究进展. 焊接学报. 2025(04): 1-21 . 本站查看
7. 王星星,田家豪,武胜金,康克家,凌自成,杜全斌,温国栋. WC含量对WC增强镍基复合涂层界面组织的影响. 焊接学报. 2024(01): 40-46+131-132 . 本站查看
8. 王星星,李阳,武胜金,杜全斌,贾连辉,李帅,陈小明. 镍/碳化钨钎涂层界面行为与力学性能. 稀有金属材料与工程. 2024(01): 215-222 . 百度学术
9. 詹怡阳,汪勇杰,栗正新. 金刚石耐磨涂层在水轮机叶片上的应用研究进展. 超硬材料工程. 2024(04): 25-31 . 百度学术
10. 冯健,姜超,侯国亭,张冠星,龙伟民. 异种金属爆炸焊接工艺参数计算与实验验证. 材料导报. 2024(S2): 467-470 . 百度学术
11. 秦建,杨骄,刘攀,刘大双,卢洪波,廖清泉,常云峰. Microstructure and properties of induction brazing nickel base/WC composite coating. China Welding. 2023(01): 27-34 . 百度学术
12. 杨洋,周俞廷,赵亦嘉. 表面织构化对铜基钎料润湿流铺的影响研究. 电焊机. 2023(04): 120-125 . 百度学术
13. 龙伟民,刘大双,吴爱萍,钟素娟,王德成. 金刚石粒度及添加量对大气环境感应钎涂层耐磨性的影响. 机械工程学报. 2023(12): 225-235 . 百度学术
14. 钟斌,王攀,李飞,李海宁,赵升吨. 感应熔覆技术研究现状及发展. 精密成形工程. 2023(08): 191-203 . 百度学术
15. 吴奇隆,董显,张雷,钟素娟,陈治强,贾连辉,罗灵杰. WC对感应钎涂金刚石涂层组织及性能的影响. 金刚石与磨料磨具工程. 2023(05): 579-585 . 百度学术
16. 姜超,龙伟民,钟素娟,樊喜刚,廖志谦,魏永强. TA1/Q235R爆炸焊接复合板界面组织及力学性能. 电焊机. 2023(11): 65-70 . 百度学术
17. 孙志鹏,张雷,朱晨颖,盛惠朋,李宇佳,钱志敏,孙华为. 农业旋耕刀具耐磨降阻减粘技术研究. 电焊机. 2023(12): 51-57 . 百度学术
18. 秦建,杨骄,龙伟民,钟素娟,刘攀,杨浩哲. 金刚石及其复合材料增材技术研究进展. 机械制造文摘(焊接分册). 2023(06): 1-11 . 百度学术
19. 秦建,杨骄,龙伟民,钟素娟,刘攀,杨浩哲. 金刚石及其复合材料增材技术研究进展. 焊接学报. 2022(08): 102-112+120 . 本站查看
20. 龙伟民,孙华为,刘大双,秦建,张雷,卢洪波. Effect of TiC addition on the microstructure and wear resistance of induction brazed nickel-based coating in air. China Welding. 2022(04): 1-6 . 百度学术
其他类型引用(0)