6061铝合金激光深熔焊等离子体光谱特征与气孔的相关性
Correlation between plasma spectral characteristic and porosity during laser deep penetration welding of 6061 aluminum alloy
-
摘要: 采用光纤激光器对6061铝合金进行焊接,获得了表面成形良好的焊缝. 利用光谱仪和高速摄像机获取等离子体的光谱和图像,分析了激光深熔焊时等离子体的光谱特征,讨论了光谱强度及其波动程度与焊缝气孔的位置及气孔率之间的相关性. 结果表明,6061铝合金激光深熔焊时等离子体的电离度低,光谱中只有金属原子谱线,AlI 396.152 nm谱线的强度能够反映焊接过程中等离子体的光谱特征;等离子体光谱强度及其波动程度与焊缝中氢气孔的形成位置和气孔率均不存在必然联系;等离子体光谱强度与小孔型气孔的位置不存在相关性,但其波动程度能够反映小孔型气孔的气孔率.
-
关键词:
- 等离子体光谱及其波动程度 /
- 氢气孔 /
- 小孔型气孔 /
- 激光深熔焊 /
- 6061铝合金
Abstract: 6061 aluminum alloy weld with good appearance was obtained by using fiber laser. The spectrometer and high-speed camera were applied to acquire plasma spectrum and dynamic image respectively, the plasma spectral characteristic was analyzed, and the correlation between spectral intensity with its fluctuant degree and the location of porosity with its percentage were discussed during laser deep penetration welding of the aluminum alloy. The result shows that the degree of plasma ionization is low, and there is only metal atomic spectral lines during the laser deep penetration welding of aluminum alloy. The intensity of AlI 396.152 nm spectral line can indicate the plasma spectral characteristic of welding process. There is not the necessary relationship between the intensity of plasma spectrum with its degree and the location of hydrogen porosity with its percentage in aluminum alloy weld. Furthermore, there is no correlation between the intensity of plasma spectrum and the location of keyhole porosity, but the fluctuant degree of plasma spectral intensity can indicate the percentage of keyhole porosity. -
-
[1] 邓玉平. 铝合金激光焊接工艺与接头性能研究[D]. 武汉: 华中科技大学, 2008. [2] 李艳军, 康 举, 吴爱萍, 等. TIG焊工艺对LD10铝合金接头气孔的影响[J]. 焊接学报, 2014, 35(4): 37-40. Li Yanjun, Kang Ju, Wu Aiping, et al. Influence of TIG welding parameters on porosity in LD10 aluminum alloy joint[J]. Transactions of the China Welding Institution, 2014, 35(4): 37-40. [3] Allweins K, Kreutzbruck M, Gierelt G. Defect detection in aluminum laser welds using an anisotropic magnetoresistive sensor array[J]. Journal of Applied Physics, 2005, 97(10): 102-104. [4] Sibillano T, Ancona A, Berardi V, et al. Real-time monitoring of laser welding by correlation analysis: the case of AA5083[J]. Optics and Lasers in Engineering, 2007, 45(10): 1005-1009. [5] Ferrara M,Ancona A, Mario P, et al. On-line quality monitoring of welding processes by means of plasma optical spectroscopy[J]. High-Power Lasers in Manufacturing, 2000, 3888(1): 750-758. -
期刊类型引用(9)
1. 邱贺方,侯笑晗,郭晓辉,崔帆帆,侯根良,张泽,罗伟蓬,袁晓静. 电弧增材制造薄壁件形状控制研究进展. 材料导报. 2024(06): 197-210 . 百度学术
2. 刘海华,刘希芝,李维. 倾斜薄壁增材过程中基板的热应力数值模拟. 材料科学与工艺. 2023(04): 70-77 . 百度学术
3. 姚波,马良,陈静,王振男. 电弧增材制造典型构件热应力变形仿真分析. 机械科学与技术. 2022(06): 961-970 . 百度学术
4. 陈国庆,邢紫麒,祖松鹤,张戈,滕新颜. Q345qD钢T形接头多层焊接接头组织转变. 焊接. 2022(10): 8-14 . 百度学术
5. 陈克选,王向余,李宜炤,陈彦强,杜茵茵. 水冷条件下WAAM温度场的数值模拟研究. 材料导报. 2021(04): 4165-4169 . 百度学术
6. 段宣政,赵菲,王淑丹,赵广辉,吴志生. 国内外金属3D打印材料现状与发展. 焊接. 2020(02): 49-55+68 . 百度学术
7. 赵菲,段宣政,刘子敬,吴志生,王安红. 3D打印一体化低合金钢/中碳钢枪钻界面表征. 焊接学报. 2020(05): 85-90+102 . 本站查看
8. 刘翔,黄亮,王亚辉,李建军. 基于锻件基体的增材制造工艺参数对温度场的影响. 塑性工程学报. 2020(12): 37-45 . 百度学术
9. 董明晔,赵玥,贾金龙,李权,王福德,吴爱萍. 铝合金筒壁电弧增材制造数值模拟中分段弧形体热源模型的建立. 清华大学学报(自然科学版). 2019(10): 823-830 . 百度学术
其他类型引用(13)
计量
- 文章访问数: 387
- HTML全文浏览量: 16
- PDF下载量: 102
- 被引次数: 22