高级检索

激光增材制造AlSi10Mg合金的力学性能研究进展

奥妮, 何子昂, 吴圣川, 彭鑫, 吴正凯, 张振先, 祝弘滨

奥妮, 何子昂, 吴圣川, 彭鑫, 吴正凯, 张振先, 祝弘滨. 激光增材制造AlSi10Mg合金的力学性能研究进展[J]. 焊接学报, 2022, 43(9): 1-19. DOI: 10.12073/j.hjxb.20220413002
引用本文: 奥妮, 何子昂, 吴圣川, 彭鑫, 吴正凯, 张振先, 祝弘滨. 激光增材制造AlSi10Mg合金的力学性能研究进展[J]. 焊接学报, 2022, 43(9): 1-19. DOI: 10.12073/j.hjxb.20220413002
AO Ni, HE Ziang, WU Shengchuan, PENG Xin, WU Zhengkai, ZHANG Zhenxian, ZHU Hongbin. Recent progress on the mechanical properties of laser additive manufacturing AlSi10Mg alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 1-19. DOI: 10.12073/j.hjxb.20220413002
Citation: AO Ni, HE Ziang, WU Shengchuan, PENG Xin, WU Zhengkai, ZHANG Zhenxian, ZHU Hongbin. Recent progress on the mechanical properties of laser additive manufacturing AlSi10Mg alloy[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(9): 1-19. DOI: 10.12073/j.hjxb.20220413002

激光增材制造AlSi10Mg合金的力学性能研究进展

基金项目: 国家自然科学基金委大科学装置联合基金资助项目(U2032121);牵引动力国家重点实验室自主课题(2022TPL-T12)
详细信息
    作者简介:

    奥妮,博士,助理研究员;主要研究方向为材料与结构的损伤、疲劳与断裂;Email: aoni@swjtu.edu.cn

    通讯作者:

    吴圣川,博士,研究员;Email: wusc@swjtu.edu.cn.

  • 中图分类号: TG 421

Recent progress on the mechanical properties of laser additive manufacturing AlSi10Mg alloy

  • 摘要: 增材制造是近几十年发展起来的一种先进金属件近净成形技术,具有低能耗、短周期、高柔性、低成本等显著优势,已成为先进装备领域的前沿制造技术之一. 与传统铸造相比,增材铝合金具有相当甚至更优的力学性能. 然而,相关质量评估标准缺乏和疲劳性能分散性较大等问题限制了其在重大工程装备中的应用. 重点以选区激光熔化成形的AlSi10Mg合金为对象,从“制造工艺—仿真模拟—性能评价”角度,系统分析了增材制造工艺参数、建造方向和热处理制度等几个重要因素对铝合金微观结构及力学性能的影响,总结了增材热力学过程模拟与力学性能的相关仿真研究现状,重点探讨了目前增材制造铝合金力学性能评价的国内外进展,并进一步归纳了基于组分调控提升铝合金力学性能的相关研究结果,最后对其发展趋势进行了展望.
    Abstract: Additive manufacturing is an advanced near net forming technology for advanced metal components developed in recent decades. With the unique advantages of low energy consumption, short cycle, high flexibility and low cost, metal additive manufacturing has become one of the most advanced cutting-edge processing technologies in the field of large-scale key engineering equipment. Compared with traditional casting, the comparable or better mechanical properties are obtained for additive manufacturing aluminum alloys. However, the problems of lacking relevant quality assessment standards and the large dispersion of fatigue strength seriously limit its wide application in key metal equipment. The AlSi10Mg alloy formed by selective laser melting is focused in the present study as the model material. From the perspective viewpoint of " manufacturing process-numerical simulation-performance evaluation", the effects of several important factors such as process parameters, building orientation and heat treatment on the microstructure and mechanical properties of aluminum alloy in additive manufacturing process are analyzed systematically. The research status of the thermodynamic process simulation of additive manufacturing and the simulation of mechanical properties is summarized. This paper focuses on the current domestic and abroad research progress in mechanical property evaluation of additive manufacturing aluminum alloy. Further, the research on improving mechanical properties of aluminum alloy based on component regulation is concluded. Finally, its development trend is prospected.
  • 近年来,中国大力推进和实施清洁能源战略,由于环保政策实施力度加大,民用和工业“煤改气”超出预期,2017年冬季中国遭遇大面积严重“气荒”. 根据中国石油集团经济技术研究院发布的《2018年国内外油气行业发展报告》,2018年中国天然气进口量达1254亿立方米,同比增长31.7%, 对外依存度45.3%. 基于国内对天然气实际需求情况,急需大量建设天然气输送管线、大型的石油、天然气储罐等国家重点工程项目. 建造液化天然气(liquefied natural gas,LNG)大型储罐可以大大降低天然气储运成本[1],解决中国天然气季节性供需矛盾. LNG低温储罐是其中的关键设备,一般由外罐、保冷层和内罐组成. 06Ni9DR钢具有焊接性能良好、强度高、−196 ℃低温韧性优异等特点[2],成为建造LNG储罐的首选材料. 然而这一材料前期主要依赖于进口. 2008年以来,鞍钢等国内钢铁企业积极进行低温用06Ni9DR钢的研发,并且最终研发成功,成果显著,冲破了国外对06Ni9DR钢的长期垄断,大力推动了国内LNG工业的发展进程. 而其焊接技术是LNG低温储罐建设核心技术之一. 06Ni9DR钢焊接过程中易出现的问题一般包括热裂纹、冷裂纹、电弧磁偏吹和低温韧性不足[3-4]. 目前,国内有关国产06Ni9DR 钢焊接热影响区(HAZ)的组织和性能的研究较少. 文中采用焊接热模拟的方法研究一次焊接热循环对06Ni9DR 钢HAZ组织和低温韧性的影响,为其焊接工艺的制定提供理论依据.

    试验用钢板是国内某著名钢厂生产的06Ni9DR钢,供货状态为淬火+回火(Quenching + tempering, QT). 奥氏体化温度790-850 ℃,冷却介质水. 回火温度540 ~ 600 ℃,冷却介质空气. 其化学成分如表1所示,测得的临界转变温度Ac1Ac3分别为615 ℃ 和702 ℃.

    表  1  06Ni9DR钢化学成分(质量分数,%)
    Table  1.  Chemical compositions of 06Ni9 steel
    CSiMnPSNi
    0.05 0.180 0.64 0.004 0.001 9.12
    AlV Cu Cr Mo Fe
    0.0250.004 0.038 0.031 0.005 余量
    下载: 导出CSV 
    | 显示表格

    采用Gleeble3500热模拟试验机再现HAZ的组织. 热模拟焊接条件为16 kJ/cm. 热模拟试样尺寸为80 mm × 10.5 mm × 10.5 mm. 热模拟参数如图1所示,四种峰值温度分别代表HAZ的粗晶区(1 350 ℃,CGHAZ)、细晶区(950 ℃,FGHAZ)、不完全淬火区(680 ℃,ICHAZ)和回火区(600 ℃,SCHAZ).

    图  1  焊接热模拟曲线
    Figure  1.  Schematic diagram of welding thermal cycles

    焊接热模拟试验后,采用标准V形缺口试样进行冲击试验,尺寸为55 mm × 10 mm × 10 mm,温度为−196 ℃. 用维氏硬度计测试硬度,扫描电镜(SEM)和背散射电子衍射(EBSD)观察显微组织及晶界,采用XRD测量残余奥氏体含量,按照五峰六线法和全谱拟合计算残余奥氏体的体积和质量分数,SEM观察冲击断口形貌.

    母材及HAZ的−196 ℃冲击吸收能量和硬度值如表2所示. 母材的冲击吸收能量为134 J,硬度值为247.3 HV10. HAZ的低温冲击韧性明显降低,说明HAZ整体发生了脆化. 峰值温度1 350 ℃粗晶区的冲击吸收能量最低,为母材的15.67%,21 J. 峰值温度950 ℃细晶区的冲击吸收能量最高,为108.3 J. 峰值温度680 ℃不完全淬火区的冲击吸收能量为105 J,较细晶区稍有降低. 峰值温度600 ℃的回火区冲击吸收能量为68.3 J,为母材的50.97%. 回火区的硬度为245.42 HV10,与母材相近. 除此之外,其余HAZ硬度相差不大,在340 HV10 ~ 350 HV10范围内,但与母材相比,提高了约100 HV10.

    表  2  母材及HAZ性能
    Table  2.  Properties of base metal and HAZ
    峰值温度Tp/℃冲击吸收能量AKV(−196℃)/J硬度H(HV10)
    母材134.0247.3
    135021.0340.0
    950108.3350.06
    680105.0342.56
    60068.3245.42
    下载: 导出CSV 
    | 显示表格

    母材和热模拟HAZ的组织如图2所示. 由图2a可见,母材06Ni9DR 钢的组织为回火马氏体和少量逆转奥氏体. 板条状马氏体分布在多边形原奥氏体晶内,逆转奥氏体主要分布在晶界上.

    图  2  扫描电镜组织形貌
    Figure  2.  SEM micrographs of base metal and simulated HAZ. (a) base metal; (b) 1350 ℃; (c) 950 ℃ ; (d) 680 ℃; (e) 600 ℃ (low power); (f) 600 ℃(high power)

    粗晶区加热温度远高于Ac3,金属属于严重过热状态,奥氏体晶粒迅速长大,因此,冷却过程中晶粒粗大的奥氏体转变为晶粒粗大的板条马氏体,还有少量的残余奥氏体(图2b). 细晶区加热温度略高于Ac3,奥氏体晶粒细小,在冷却过程中,晶粒细小的奥氏体转变为晶粒细小的马氏体以及少量的残余奥氏体(图2c). 不完全淬火区加热温度处于Ac1和Ac3之间,只有部分马氏体转变为奥氏体. 由于加热时间短,加热温度不高,Ni等化学元素不能快速扩散,导致形成的奥氏体不能快速长大. 而少量未转变的马氏体继续长大,因此室温组织为晶粒尺寸不均匀的马氏体和残余奥氏体(图2d). 由图2e可见,回火区加热温度在MsAc1之间,由马氏体直接切变生成逆转奥氏体,是非扩散型转变产物. 由于组织中C,Ni,Mn等稳定奥氏体元素聚集量较高,热稳定性很高,常温中能够稳定存在,主要分布在原奥氏体晶界、马氏体束界[5]、马氏体板条间. 高倍观察(图2f),大块逆转奥氏体在冷却过程中又形成二次板条马氏体. 回火区的组织为回火马氏体和逆转奥氏体.

    图3为HAZ含有晶界的EBSD欧拉取向图和晶界角度图,蓝色为3° ~ 15°小角度晶界,绿色为15° ~ 45°大角度晶界,黄色为大于 45°有效大角度晶界. 可见,粗晶区的原奥氏体晶界主要为15° ~ 45°的大角度晶界,晶界内部不同取向板条束之间为黄色有效大角度晶界,取向差较小的板条之间为小角度晶界(图3b). 细晶区的晶粒呈多边形块状,且细化明显(图3c). 未完全淬火区晶粒大小较不均匀(图3d). 回火区的原奥氏体晶粒较母材无明显变化(图3e). 如图3f所示,45°以上有效大角度晶界含量分别为母材21.7%,粗晶区14.4%,细晶区24.4%,不完全淬火区33.5%,回火区23.1%.母材及HAZ马氏体相晶粒内部局域取向差分布如图4所示. 母材的局域取向差峰值在0.45°,粗晶区的局域取向差峰值为1.55°,细晶区和回火区的均为0.55°,不完全淬火区的取向差峰值为0.35°. 说明母材及HAZ晶粒内部存在着不均匀的位错密度堆积,除粗晶区以外三个区的位错密度低、产生的位错滑移运动较少,塑性较好[6].

    图  3  EBSD欧拉图和晶界角度分布
    Figure  3.  EBSD Euler graphs and local misorientation distribution.(a) base metal; (b) 1350 ℃; (c) 950 ℃; (d) 680 ℃; (e) 600 ℃; (f) grain boundary angle distribution
    图  4  局域取向差分布
    Figure  4.  Local misorientation distribution

    母材及HAZ奥氏体含量如表3所示. 由于奥氏体与马氏体密度不同,计算出的质量分数与体积分数在数值上有所差距,但是变化趋势相同. 相对母材,粗晶区奥氏体的含量与其相近,细晶区较之略有降低,不完全淬火区和回火区的奥氏体含量相对提高.

    表  3  母材及HAZ奥氏体含量
    Table  3.  Austenite content of base metal and HAZ
    峰值温度Tp/℃奥氏体体积分数V(%)奥氏体质量分数w(%)
    母材 1.97 0.90
    1350 1.95 0.88
    950 1.88 0.63
    680 3.10 1.28
    600 2.60 1.20
    下载: 导出CSV 
    | 显示表格

    母材断口包括纤维区、放射区和剪切唇. 放射区有细小的河流花样和撕裂棱,为准解理断裂(图5a). 粗晶区(图5b)宏观断口平齐,几乎无塑性变形,纤维区及剪切唇基本消失,几乎全部为放射区,且该区无表征微小塑性变形的放射线花样,呈现闪光小面组成的结晶状断口形貌. 另外,可见一系列取向不同的平坦、光滑的解理小刻面. 这些小刻面尺寸大致相当于马氏体束大小. 每个小刻面上有解理台阶、河流花样、二次裂纹等特征,为解理断裂. 细晶区(图5c)和不完全淬火区(图5d)断口类似,主要由纤维区、较小的放射区与剪切唇组成. 放射区由细小且浅的韧窝、河流花样组成,为准解理断裂. 回火区(图5e)断口纤维区较小,主要由放射区与剪切唇组成. 放射区为准解理断裂与二次裂纹特征,可见撕裂棱、河流花样和解理面.

    图  5  断口形貌
    Figure  5.  Fracture morphology. (a) base metal; (b)1350 ℃; (c) 950 ℃; (d) 680 ℃; (e) 600 ℃

    表2可见,06Ni9DR 钢HAZ-196 ℃的冲击能量明显低于母材,HAZ整体发生了脆化. 粗晶区脆化最为明显,其次是回火区. HAZ脆化与组织、晶粒大小、大小角度晶界和位错密度等密切相关. HAZ的组织为马氏体或回火马氏体和少量的残余或逆转奥氏体(图2). 45°以上有效大角度晶界含量为680 ℃ > 950 ℃ > 600 ℃ > 母材 > 1350 ℃(图3f). 局域取向差峰值(位错密度)为1350 ℃ > 950 ℃、600 ℃ > 母材 > 680 ℃(图4). 一般来说,有效大角度晶界越多[7-8],位错密度越低,材料韧性越好. 残余或逆转奥氏体的数量、形态和分布直接影响HAZ的低温冲击功.

    粗晶区脆化的原因包括以下几个方面:一是原始奥氏体晶粒粗大[9-11]. 经计算粗晶区的晶粒平均直径超过100 μm,根据Hall-Petch公式,晶粒直径越大,裂纹扩展临界应力增量越小,韧性越低. 另外,有效大角度晶界一般分布于原奥氏体晶界和板条束界,晶粒粗大使得有效大角度晶界较少. 而大角度晶界能够阻碍裂纹的扩展,使裂纹发生钝化而产生分支,从而消耗能量,增大韧性[10]. 二是位错密度较大,导致位错缠结、交割,使其运动阻力增大,韧性降低. 三是粗大板条马氏体的存在. 板条马氏体的板条平直细长,平行排列方向性强,解理裂纹在马氏体的板条束中可连续无阻碍贯穿,导致韧性降低[12]. 四是残余奥氏体少且不稳定. 06Ni9DR 钢具有良好的低温韧性是因为逆转奥氏体的存在. 逆转奥氏体是马氏体回火时切变产生的,而残余奥氏体是马氏体相变结束剩余的过冷奥氏体. 前者含有C,Ni,Mn等奥氏体稳定元素,−196 ℃时稳定性较高,可提高材料的韧性. 后者储存能量较高,不稳定,相对于逆转奥氏体更容易转变,对低温韧性贡献较小[13].

    细晶区的有效大角度晶界和位错密度稍高于母材,残余奥氏体量稍低于母材,但其韧性远低于且硬度远高于母材. 分析认为原因可能有两个方面:一是,细晶区的马氏体为淬火马氏体,相对母材的回火马氏体,其过饱和度、内应力较大,导致塑性低而硬度高. 二是,残余奥氏体的韧化效果低于逆转奥氏体[13]. 细晶区的硬度和韧性高于其它HAZ,主要是细晶强化的结果.

    不完全淬火区的有效大角度晶界和残余奥氏体量高于母材,位错密度低于母材,但其韧性值和硬度值与细晶区相近,韧性低于母材,硬度高于母材. 导致其韧性低于母材的原因与细晶区类似,主要是淬火马氏体和残余奥氏体的存在. 另外,晶粒大小不均匀,尤其是粗大马氏体的存在也是导致韧性降低的重要因素. 需要指出的是不完全淬火区的残余奥氏体的含量远高于母材,但韧性远低于母材,这进一步说明残余奥氏体稳定性较差,对低温韧性的贡献较小[13].

    回火区的有效大角度晶界和取向差峰值稍高于母材,逆转奥氏体量远高于母材,但其韧性远低于母材. 这主要是因为母材中原有的逆转奥氏体经过600 ℃二次回火作用,C,Ni元素继续扩散,向晶界处的逆转奥氏体聚集,原逆转奥氏体继续长大,并不断生成新的逆转奥氏体,沿晶界密集呈链状分布,降低了原奥氏体晶界的结合力,为裂纹扩展提供了通道. 另外,晶界存在的部分大块奥氏体在回火过程中转变成二次板条马氏体(图2f),形成M-A组元,也会导致韧性降低[14].

    (1) 06Ni9DR 钢粗晶区和回火区的冲击吸收能量分别为母材的15.67%和50.97%. 细晶区和不完全脆化区的冲击吸收能量相近,分别为母材的80.82%和78.36%.

    (2) 粗晶区断口为解理断裂,脆化原因主要为原始奥氏体晶粒粗大及其导致的有效大角度晶界较少,残余奥氏体量少且不稳定,以及较大的位错密度和粗大马氏体的存在.

    (3) 回火区断口为准解理断裂,其脆化的主要原因是晶界呈链状分布的大块逆转奥氏体和M-A组元的存在.

    (4) 细晶区和不完全淬火区的断口均为准解理断裂. 淬火马氏体的存在和残余奥氏体的低温稳定性差导致两区韧性低于母材. 另外,晶粒大小不均匀也会导致不完全淬火区韧性降低.

  • 图  1   激光增材制造金属零件建造方向示意图[40]

    Figure  1.   Schematic of building orientation of laser AM metal parts. (a) normal view of yOz plane; (b) normal view of xOy plane

    图  2   建造方向对SLM AlSi10Mg合金拉伸性能的影响

    Figure  2.   Effect of build orientation on tensile properties of SLM AlSi10Mg alloys

    图  3   热处理制度对选区激光熔化AlSi10Mg铝合金拉伸性能的影响[10,13,48-60]

    Figure  3.   Effect of heat treatment technology on tensile properties of SLM AlSi10Mg alloy. (a) tensile strength and yield strength; (b) elongation

    图  4   选区激光熔化热力学过程模拟

    Figure  4.   Thermodynamic process simulation of SLM. (a) mesh model of powder bed; (b) temperature field contour of melt pool

    图  5   选区激光熔化AlSi10Mg铝合金椭球形缺陷的Mises应力云图

    Figure  5.   Mises stress distribution of ellipsoidal defect of SLM AlSi10Mg alloys

    图  6   基于缺陷表征技术的疲劳性能评价流程[48,78-80]

    Figure  6.   Fatigue performance evaluation based on defect representation technology

    图  7   兼容于上海同步辐射光源的原位拉伸试验机[80, 90]

    Figure  7.   In-situ tensile testing machine compatible with Shanghai synchrotron radiation source. (a) image of real products; (b) design drawing

    图  8   选区激光熔化AlSi10Mg合金标准和基于El-Haddad模型修正的K-T图[48]

    Figure  8.   Standard and modified K-T diagram based on EI-Haddad model of SLM AlSi10Mg alloys

    图  9   基于机器学习的增材制造金属材料力学性能评价流程[108-113]

    Figure  9.   Evaluation process of mechanical performance of AM metal materials based on machine learning

    图  10   增材制造专用铝合金粉末的添加物分类[121-128]

    Figure  10.   Classification of additives for the SLM AlSi10Mg alloy powder

    表  1   选区激光熔化成形过程的主要技术参数[35]

    Table  1   Technological parameters of SLM process

    粉末参数 激光参数 扫描参数 环境参数
    颗粒形状、颗粒尺寸和分布、化学成分、热导率、熔点、吸收率/反射率、堆积层厚度、粉末预热温度 激光功率、激光束直径、激光种类、激光入射角度、光斑大小、激光点距、脉冲持续时间、脉冲频率 扫描间距、
    扫描速度、
    扫描策略
    保护气体、惰性气体流速、基板预热温度
    下载: 导出CSV
  • [1] 王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题[J]. 航空学报, 2014, 35(10): 2690 − 2698.

    Wang Huaming. Materials’ fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2690 − 2698.

    [2] 龚淼, 戴士杰, 王志平, 等. 航空压气机叶片增材修复最优热输入分析[J]. 焊接学报, 2020, 41(8): 39 − 47,99. doi: 10.12073/j.hjxb.20200602001

    Gong Miao, Dai Shijie, Wang Zhiping, et al. Research on optimal heat input for blade repair of aero compressor[J]. Transactions of the China Welding Institution, 2020, 41(8): 39 − 47,99. doi: 10.12073/j.hjxb.20200602001

    [3] 林鑫, 黄卫东. 高性能金属构件的激光增材制造[J]. 中国科学:信息科学, 2015, 45(9): 1111 − 1126. doi: 10.1360/N112014-00245

    Lin Xin, Huang Weidong. Laser additive manufacturing of high-performance metal components[J]. Scientia Sinica (Informationis), 2015, 45(9): 1111 − 1126. doi: 10.1360/N112014-00245

    [4] 张文奇, 朱海红, 胡志恒, 等. AlSi10Mg的激光选区熔化成形研究[J]. 金属学报, 2017, 53(8): 918 − 926. doi: 10.11900/0412.1961.2016.00472

    Zhang Wenqi, Zhu Haihong, Hu Zhiheng, et al. Study on the selective laser melting of AlSi10Mg[J]. Acta Metallurgica Sinica, 2017, 53(8): 918 − 926. doi: 10.11900/0412.1961.2016.00472

    [5] 张新明, 刘胜胆. 航空铝合金及其材料加工[J]. 中国材料进展, 2013, 32(1): 39 − 55. doi: 10.7502/j.issn.1674-3962.2013.01.04

    Zhang Xinming, Liu Shengdan. Aerocraft aluminum alloys and their materials processing[J]. Materials China, 2013, 32(1): 39 − 55. doi: 10.7502/j.issn.1674-3962.2013.01.04

    [6] 陈国庆, 树西, 张秉刚, 等. 国内外电子束熔丝沉积增材制造技术发展现状[J]. 焊接学报, 2018, 39(8): 123 − 128,134. doi: 10.12073/j.hjxb.2018390214

    Chen Guoqing, Shu Xi, Zhang Binggang, et al. State-of-arts of electron beam freeform fabrication technology[J]. Transactions of the China Welding Institution, 2018, 39(8): 123 − 128,134. doi: 10.12073/j.hjxb.2018390214

    [7] 洪恩航, 刘美红, 黎振华. 基于开源切片路径规划的机器人电弧增材制造系统[J]. 焊接学报, 2021, 42(11): 65 − 69. doi: 10.12073/j.hjxb.20210312004

    Hong Enhang, Liu Meihong, Li Zhenhua. Development of wire arc additive manufacturing robotic system based on open source slicing software for path planning[J]. Transactions of the China Welding Institution, 2021, 42(11): 65 − 69. doi: 10.12073/j.hjxb.20210312004

    [8] 张兆栋, 曾庆文, 刘黎明, 等. 铝合金激光诱导MIG电弧增材制造成形尺寸规律[J]. 焊接学报, 2019, 40(8): 7 − 12.

    Zhang Zhaodong, Zeng Qingwen, Liu Liming, et al. Forming regularity of aluminum alloy formed by laser induced MIG arc additive manufacturing[J]. Transactions of the China Welding Institution, 2019, 40(8): 7 − 12.

    [9] 樊丁, 李楠, 黄健康, 等. 旁路耦合微束等离子弧增材制造自适应高度控制系统[J]. 焊接学报, 2019, 40(11): 1 − 7. doi: 10.12073/j.hjxb.2019400279

    Fan Ding, Li Nan, Huang Jiankang, et al. Double electrode micro plasma arc additive manufacturing control system based on adaptive height adjustment[J]. Transactions of the China Welding Institution, 2019, 40(11): 1 − 7. doi: 10.12073/j.hjxb.2019400279

    [10]

    Uzan N E, Shneck R, Yeheskel O, et al. Fatigue of AlSi10Mg specimens fabricated by additive manufacturing selective laser melting (AM-SLM)[J]. Materials Science & Engineering:A, 2017, 704: 229 − 237.

    [11]

    Thijs L, Kempen K, Kruth J P, et al. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder[J]. Acta Materialia, 2013, 61(5): 1809 − 1819. doi: 10.1016/j.actamat.2012.11.052

    [12]

    Tang M, Pistorius P C. Oxides, porosity and fatigue performance of AlSi10Mg parts produced by selective laser melting[J]. International Journal of Fatigue, 2017, 94: 192 − 201. doi: 10.1016/j.ijfatigue.2016.06.002

    [13]

    Kempen K, Thijs L, Humbeeck J V. Processing AlSi10Mg by selective laser melting: Parameter optimisation and material characterisation[J]. Materials Science & Technology, 2015, 31(8): 917 − 923.

    [14]

    Leary M, Mazur M, Elambasseril J, et al. Selective laser melting (SLM) of AlSi12Mg lattice structures[J]. Materials & Design, 2016, 98: 344 − 357.

    [15]

    Kaufmann N, Imran M, Wischeropp T M, et al. Influence of process parameters on the quality of aluminium alloy EN AW 7075 using selective laser melting (SLM)[J]. Physics Procedia, 2016, 83: 918 − 926. doi: 10.1016/j.phpro.2016.08.096

    [16]

    Read N, Wang W, Essa K, et al. Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development[J]. Materials & Design, 2015, 65: 417 − 424.

    [17]

    Rakesh C S, Priyanka N, Jayaganthan R, et al. Effect of build atmosphere on the mechanical properties of AlSi10Mg produced by selective laser melting[J]. Materials Today: Proceedings, 2018, 5(9): 17231 − 17238. doi: 10.1016/j.matpr.2018.04.133

    [18]

    Zaretsky E, Stern A, Frage N, et al. Dynamic response of AlSi10Mg alloy fabricated by selective laser melting[J]. Materials Science & Engineering: A, 2017, 688: 364 − 370.

    [19]

    Jawade S A, Joshi R S, Desai S B. Comparative study of mechanical properties of additively manufactured aluminum alloy[J]. Materials Today: Proceedings, 2021, 46(19): 9270 − 9274.

    [20] 吴正凯. 基于缺陷三维成像的增材铝合金各向异性疲劳性能评价[D]. 成都: 西南交通大学, 2020.

    Wu Zhengkai. Evaluation of anisotropic fatigue performance of additively manufactured aluminium alloy based on 3D X-ray computed tomography of defects [D]. Chengdu: Southwest Jiaotong University, 2020.

    [21] 余开斌, 刘允中, 杨长毅. 热处理对选区激光熔化成形AlSi10Mg合金显微组织及力学性能的影响[J]. 粉末冶金材料科学与工程, 2018, 23(3): 298 − 305. doi: 10.3969/j.issn.1673-0224.2018.03.010

    Yu Kaibin, Liu Yunzhong, Yang Changyi. Effects of heat treatment on microstructures and mechanical properties of AlSi10Mg alloy produced by selective laser melting[J]. Materials Science and Engineering of Powder Metallurgy, 2018, 23(3): 298 − 305. doi: 10.3969/j.issn.1673-0224.2018.03.010

    [22] 董鹏, 李忠华, 严振宇, 等. 铝合金激光选区熔化成形技术研究现状[J]. 应用激光, 2015, 35(5): 607 − 611. doi: 10.14128/j.cnki.al.20153505.607

    Dong Peng, Li Zhonghua, Yan Zhenyu, et al. Research status of selective laser melting of aluminum alloys[J]. Applied Laser, 2015, 35(5): 607 − 611. doi: 10.14128/j.cnki.al.20153505.607

    [23] 廉艳平, 王潘丁, 高杰, 等. 金属增材制造若干关键力学问题研究进展[J]. 力学进展, 2021, 51(3): 648 − 701. doi: 10.6052/1000-0992-21-037

    Lian Yanping, Wang Panding, Gao Jie, et al. Fundamental mechanics problems in metal additive manufacturing: A state-of-art review[J]. Advances in Mechanics, 2021, 51(3): 648 − 701. doi: 10.6052/1000-0992-21-037

    [24]

    Zhang J L, Song B, Wei Q S, et al. A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends[J]. Journal of Materials Science & Technology, 2019, 35(2): 270 − 284.

    [25] 宋哲. 选区激光熔化钛合金的缺陷容限评价方法[D]. 成都: 西南交通大学, 2019.

    Song Zhe. Evaluation method of defect tolerance of selective laser melting titanium alloy[D]. Chengdu: Southwest Jiaotong University, 2019.

    [26] 王凯, 焦向东, 朱加雷, 等. 激光功率密度对SLM成形TC4磨损性能的影响[J]. 焊接学报, 2020, 41(5): 61 − 64. doi: 10.12073/j.hjxb.20190926001

    Wang Kai, Jiao Xiangdong, Zhu Jialei, et al. Effect of laser power density on wear resistance of TC4 alloy manufactured by SLM[J]. Transactions of the China Welding Institution, 2020, 41(5): 61 − 64. doi: 10.12073/j.hjxb.20190926001

    [27]

    Chen J, Hou W, Wang X Z, et al. Microstructure, porosity and mechanical properties of selective laser melted AlSi10Mg[J]. Chinese Journal of Aeronautics, 2020, 33(7): 2043 − 2054. doi: 10.1016/j.cja.2019.08.017

    [28]

    Aboulkhair N T, Everitt N M, Ashcroft I, et al. Reducing porosity in AlSi10Mg parts processed by selective laser melting[J]. Additive Manufacturing, 2014, 1: 77 − 86.

    [29]

    Wu H H, Li J F, Wei Z Y, et al. Effect of processing parameters on forming defects during selective laser melting of AlSi10Mg powder[J]. Rapid Prototyping Journal, 2020, 26(5): 871 − 879. doi: 10.1108/RPJ-07-2018-0184

    [30]

    Fiegl T, Franke M, Koerner C, et al. Impact of build envelope on the properties of additive manufactured parts from AlSi10Mg[J]. Optics & Laser Technology, 2019, 111: 51 − 57.

    [31]

    Jiang X H, Ye T, Zhu Y H. Effect of process parameters on residual stress in selective laser melting of AlSi10Mg[J]. Materials Science & Technology, 2020, 36(3): 342 − 352.

    [32]

    Biffi C A, Fiocchi J, Tuissi A. Selective laser melting of AlSi10 Mg: Influence of process parameters on Mg2Si precipitation and Si spheroidization[J]. Journal of Alloys & Compounds, 2018, 755: 100 − 107.

    [33] 蔡笑宇, 董博伦, 殷宪铼, 等. 预热温度对GTA增材制造钛铝合金组织及性能的影响[J]. 焊接学报, 2021, 42(10): 14 − 21.

    Cai Xiaoyu, Dong Bolun, Yin Xianlai, et al. Influences of preheating temperatures on the microstructures and mechanical properties of GTA additive manufactured TiAl based alloy[J]. Transactions of the China Welding Institution, 2021, 42(10): 14 − 21.

    [34]

    Brandl E, Heckenberger U, Holzinger V, et al. Additive manufactured AlSi10Mg samples using selective laser melting (SLM): Microstructure, high cycle fatigue, and fracture behavior[J]. Materials & Design, 2012, 34: 159 − 169.

    [35]

    Trevisan F, Calignano F, Lorusso M. On the selective laser melting (SLM) of the AlSi10Mg alloy: Process, microstructure, and mechanical properties[J]. Materials, 2017, 10(1): 76. doi: 10.3390/ma10010076

    [36]

    Jian Z M, Qian G A, Paolino D S, et al. Crack initiation behavior and fatigue performance up to very-high-cycle regime of AlSi10Mg fabricated by selective laser melting with two powder sizes[J]. International Journal of Fatigue, 2021, 143: 106013. doi: 10.1016/j.ijfatigue.2020.106013

    [37]

    Biffi C A, Fiocchi J, Bassani P, et al. Continuous wave vs pulsed wave laser emission in selective laser melting of AlSi10Mg parts with industrial optimized process parameters: Microstructure and mechanical behaviour[J]. Additive Manufacturing, 2018, 24: 639 − 646. doi: 10.1016/j.addma.2018.10.021

    [38]

    Ahmad B A, Pham Q C. Selective laser melting of AlSi10Mg: Effects of scan direction, part placement and inert gas flow velocity on tensile strength[J]. Journal of Materials Processing & Technology, 2017, 240: 388 − 396.

    [39] 杨义成, 黄瑞生, 孙谦, 等. 激光送粉增材制造光粉交互作用机制分析[J]. 焊接学报, 2019, 40(11): 68 − 74. doi: 10.12073/j.hjxb.2019400290

    Yang Yicheng, Huang Ruisheng, Sun Qian, et al. Mechanism analysis of interaction between laser and particles in laser additive manufacturing[J]. Transactions of the China Welding Institution, 2019, 40(11): 68 − 74. doi: 10.12073/j.hjxb.2019400290

    [40]

    Hitzler L, Janousch C, Schanz J, et al. Direction and location dependency of selective laser melted AlSi10Mg specimens[J]. Journal of Materials Processing Technology, 2017, 243: 48 − 61. doi: 10.1016/j.jmatprotec.2016.11.029

    [41]

    Maconachie T, Leary M, Zhang J J, et al. Effect of build orientation on the quasi-static and dynamic response of SLM AlSi10Mg[J]. Materials Science & Engineering: A, 2020, 788: 139445.

    [42]

    Kempen K, Thijs L, Humbeeck J V, et al. Mechanical properties of AlSi10Mg produced by selective laser melting[J]. Physics Procedia, 2012, 39: 439 − 446. doi: 10.1016/j.phpro.2012.10.059

    [43]

    Rosenthal I, Stern A, Frage N, et al. Microstructure and mechanical properties of AlSi10Mg parts produced by the laser beam additive manufacturing (AM) technology[J]. Metallography, Microstructure, and Analysis, 2014, 3(6): 448 − 453.

    [44]

    Hitzler L, Schoch N, Heine B, et al. Compressive behaviour of additively manufactured AlSi10Mg[J]. Materialwissenschaft und Werkstofftechnik, 2018, 49(5): 683 − 688. doi: 10.1002/mawe.201700239

    [45]

    Hitzler L, Hirsch J, Schanz J, et al. Fracture toughness of selective laser melted AlSi10Mg[J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2019, 233(4): 615 − 621.

    [46]

    Bar N, Moshe N, Adin S, et al. Study on the dynamic properties of AM-SLM AlSi10Mg alloy using the Split Hopkinson Pressure Bar (SHPB) technique[J]. EPJ Web of Conferences, 2018, 183: 04005. doi: 10.1051/epjconf/201818304005

    [47]

    Xu Z W, Liu A, Wang X S, et al. Fatigue performance and crack propagation behavior of selective laser melted AlSi10Mg in 0°, 15°, 45° and 90° building directions[J]. Materials Science & Engineering: A, 2021, 812: 141141.

    [48]

    Wu Z K, Wu S C, Bao J G, et al. The effect of defect population on the anisotropic fatigue resistance of AlSi10Mg alloy fabricated by laser powder bed fusion[J]. International Journal of Fatigue, 2021, 151: 106317. doi: 10.1016/j.ijfatigue.2021.106317

    [49]

    Beretta S, Gargourimotlagh M, Foletti S, et al. Fatigue strength assessment of "as built" AlSi10Mg manufactured by SLM with different build orientations[J]. International Journal of Fatigue, 2020, 139: 105737. doi: 10.1016/j.ijfatigue.2020.105737

    [50]

    Nezhadfar P D, Thompson S, Saharan A, et al. Structural integrity of additively manufactured aluminum alloys: Effects of build orientation on microstructure, porosity, and fatigue behavior[J]. Additive Manufacturing, 2021, 47: 102292. doi: 10.1016/j.addma.2021.102292

    [51]

    Li W, Li S, Liu J, et al. Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: microstructure evolution, mechanical properties and fracture mechanism[J]. Materials Science & Engineering: A, 2016, 663: 116 − 125.

    [52]

    Wang L F, Sun J, Zhu X G, et al. Effects of T2 heat treatment on microstructure and properties of the selective laser melted aluminum alloy samples[J]. Materials, 2018, 11(1): 66. doi: 10.3390/ma11010066

    [53]

    Casati R, Hamidi N M, Coduri M, et al. Effects of platform pre-heating and thermal-treatment strategies on properties of AlSi10Mg alloy processed by selective laser melting[J]. Metals, 2018, 8(11): 954. doi: 10.3390/met8110954

    [54]

    Rosenthal I, Nahmany M, Stern A, et al. Structure and mechanical properties of AlSi10Mg fabricated by selective laser melting additive manufacturing (SLM-AM)[J]. Advanced Materials Research, 2015, 1111: 62 − 66. doi: 10.4028/www.scientific.net/AMR.1111.62

    [55]

    Aboulkhair N T, Maskery I, Tuck C, et al. The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment[J]. Materials Science & Engineering: A, 2016, 667: 139 − 146.

    [56]

    Tridello A, Fiocchi J, Biffi C A, et al. Influence of the annealing and defects on the VHCF behavior of an SLM AlSi10Mg alloy[J]. Fatigue & Fracture of Engineering Materials & Structures, 2019, 42(12): 2794 − 2807.

    [57]

    Larrosa N O, Wang W, Read N, et al. Linking microstructure and processing defects to mechanical properties of selectively laser melted AlSi10Mg alloy[J]. Theoretical & Applied Fracture Mechanics, 2018, 98: 123 − 133.

    [58]

    Finfrock C B, Exil A, Carroll J D, et al. Effect of hot isostatic pressing and powder feedstock on porosity, microstructure, and mechanical properties of selective laser melted AlSi10Mg[J]. Metallography, Microstructure, and Analysis, 2018, 7(4): 443 − 456.

    [59]

    Zhang C C, Zhu H H, Liao H L, et al. Effect of heat treatments on fatigue property of selective laser melting AlSi10Mg[J]. International Journal of Fatigue, 2018, 116: 513 − 522. doi: 10.1016/j.ijfatigue.2018.07.016

    [60]

    Han Q Q, Jiao Y. Effect of heat treatment and laser surface remelting on AlSi10Mg alloy fabricated by selective laser melting[J]. International Journal of Advanced Manufacturing Technology, 2019, 102(9-12): 3315 − 3324. doi: 10.1007/s00170-018-03272-y

    [61] 张弛, 沈忱, 李芳, 等. 铝合金熔丝增材制造表面平整度研究[J]. 电焊机, 2020, 50(2): 53 − 57. doi: 10.7512/j.issn.1001-2303.2020.02.11

    Zhang Chi, Shen Chen, Li Fang, et al. Study on surface flatness of aluminum alloy by wire arc additive manufacturing(WAAM)[J]. Electric Welding Machine, 2020, 50(2): 53 − 57. doi: 10.7512/j.issn.1001-2303.2020.02.11

    [62] 唐琪, 陈静青, 陈鹏, 等. 基于有限元的激光增材过程熔化热积累模拟[J]. 焊接学报, 2019, 40(7): 100 − 104. doi: 10.12073/j.hjxb.2019400189

    Tang Qi, Chen Jingqing, Chen Peng, et al. Finite element simulation of melting heat accumulation in laser additive manufacturing[J]. Transactions of the China Welding Institution, 2019, 40(7): 100 − 104. doi: 10.12073/j.hjxb.2019400189

    [63]

    Li Z H, Li B Q, Bai P K, et al. Research on the thermal behaviour of a selectively laser melted aluminium alloy: Simulation and experiment[J]. Materials, 2018, 11(7): 1172. doi: 10.3390/ma11071172

    [64]

    Ding X P, Wang L Z. Heat transfer and fluid flow of molten pool during selective laser melting of AlSi10Mg powder: Simulation and experiment[J]. Journal of Manufacturing Processes, 2017, 26: 280 − 289. doi: 10.1016/j.jmapro.2017.02.009

    [65]

    Li Y L, Gu D D. Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder[J]. Materials & Design, 2014, 63: 856 − 867.

    [66]

    Liu S W, Zhu H H, Peng G Y, et al. Microstructure prediction of selective laser melting AlSi10Mg using finite element analysis[J]. Materials & Design, 2018, 142: 319 − 328.

    [67]

    Hu H W, Ding X P, Wang L Z. Numerical analysis of heat transfer during multi-layer selective laser melting of AlSi10Mg[J]. Optik - International Journal for Light & Electron Optics, 2016, 127(20): 8883 − 8891.

    [68]

    Nadot Y, Nadot-Martin C, Kan W H, et al. Predicting the fatigue life of an AlSi10Mg alloy manufactured via laser powder bed fusion by using data from computed tomography[J]. Additive Manufacturing, 2020, 32: 100899. doi: 10.1016/j.addma.2019.100899

    [69]

    Wang P D, Lei H S, Zhu X L, et al. Influence of manufacturing geometric defects on the mechanical properties of AlSi10Mg alloy fabricated by selective laser melting[J]. Journal of Alloys & Compounds, 2019, 789: 852 − 859.

    [70]

    Wang P D, Zhou H, Zhang L M, et al. In situ X-ray micro-computed tomography study of the damage evolution of prefabricated through-holes in SLM-Printed AlSi10Mg alloy under tension[J]. Journal of Alloys & Compounds, 2020, 821: 153576.

    [71]

    Amani Y, Dancette S, Delroisse P, et al. Compression behavior of lattice structures produced by selective laser melting: X-ray tomography based experimental and finite element up approaches[J]. Acta Materialia, 2018, 159: 395 − 407. doi: 10.1016/j.actamat.2018.08.030

    [72]

    Li Z H, Nie Y F, Liu B, et al. Mechanical properties of AlSi10Mg lattice structures fabricated by selective laser melting[J]. Materials & Design, 2020, 192: 108709.

    [73]

    Zhang W J, Hu Y Y, Ma X F, et al. Very-high-cycle fatigue behavior of AlSi10Mg manufactured by selected laser melting: Crystal plasticity modeling[J]. International Journal of Fatigue, 2021, 145: 106109. doi: 10.1016/j.ijfatigue.2020.106109

    [74]

    Subbiah R, Bensingh J, Kader A, et al. Influence of printing parameters on structures, mechanical properties and surface characterization of aluminium alloy manufactured using selective laser melting[J]. International Journal of Advanced Manufacturing Technology, 2020, 106(11-12): 5137 − 5147. doi: 10.1007/s00170-020-04929-3

    [75]

    Beretta S, Romano S. A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes[J]. International Journal of Fatigue, 2017, 94: 178 − 191. doi: 10.1016/j.ijfatigue.2016.06.020

    [76]

    Daniewicz S R, Shamsaei N. An introduction to the fatigue and fracture behavior of additive manufactured parts[J]. International Journal of Fatigue, 2017, 94: 167. doi: 10.1016/j.ijfatigue.2016.07.007

    [77]

    Leuders S, Thone M, Riemer A, et al. On the mechanical behavior of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance[J]. International Journal of Fatigue, 2018, 48: 300 − 307.

    [78] 虞雨洭, 吴正凯, 吴圣川. 高分辨三维成像原位试验机研制进展及应用[J]. 中国材料进展, 2021, 40(2): 90 − 104. doi: 10.7502/j.issn.1674-3962.202007031

    Yu Yukuang, Wu Zhengkai, Wu Shengchuan. Development and application of in-situ testing machines based on high resolution three-dimensional tomography[J]. Materials China, 2021, 40(2): 90 − 104. doi: 10.7502/j.issn.1674-3962.202007031

    [79]

    Xie C, Wu S C, Yu Y K, et al. Defect-correlated fatigue resistance of additively manufactured Al-Mg4.5Mn alloy with in situ micro-rolling[J]. Journal of Materials Processing Technology, 2021, 291: 117039. doi: 10.1016/j.jmatprotec.2020.117039

    [80] 吴圣川, 吴正凯, 谢成, 等. 基于X射线成像的大载荷高频率原位拉伸和疲劳试验机: CN201910210664.3[P]. 2019 − 03 − 20.

    Wu Shengchuan, Wu Zhengkai, Xie Zheng, et al. Large load high frequency in situ tensile and fatigue testing machine based on X-ray imaging: CN201910210664.3[P]. 2019 − 03 − 20.

    [81] 吴圣川, 吴正凯, 康国政, 等. 先进材料多维多尺度高通量表征研究进展[J]. 机械工程学报, 2021, 57(16): 37 − 65. doi: 10.3901/JME.2021.16.037

    Wu Shengchuan, Wu Zhengkai, Kang Guozheng, et al. Research progress on multi-dimensional and multi-scale high-throughput characterization for advanced materials[J]. Journal of Mechanical Engineering, 2021, 57(16): 37 − 65. doi: 10.3901/JME.2021.16.037

    [82]

    Bao J G, Wu S C, Withers P J, et al. Defect evolution during high temperature tension-tension fatigue of SLM AISi10Mg alloy by synchrotron tomography[J]. Materials Science & Engineering: A, 2020, 792: 139809.

    [83]

    Bao J G, Wu Z K, Wu S C, et al. Hot dwell-fatigue behaviour of additively manufactured AlSi10Mg alloy: Relaxation, cyclic softening and fracture mechanisms[J]. International Journal of Fatigue, 2021, 151: 106408. doi: 10.1016/j.ijfatigue.2021.106408

    [84]

    Haboub A, Bale H A, Nasiatka J R, et al. Tensile testing of materials at high temperatures above 1700 ℃ with in situ synchrotron X-ray micro-tomography[J]. The Review of Scientific Instruments, 2014, 85(8): 083702. doi: 10.1063/1.4892437

    [85]

    Sloof W G, Pei R Z, Mcdonald S A, et al. Repeated crack healing in MAX-phase ceramics revealed by 4D in situ synchrotron X-ray tomographic microscopy[J]. Scientific Reports, 2016, 6(1): 23040. doi: 10.1038/srep23040

    [86]

    Puncreobutr C, Lee P D, Hamilton R W, et al. Synchrotron tomographic characterization of damage evolution during aluminum alloy solidification[J]. Metallurgical and Materials Transactions A, 2013, 44(12): 5389 − 5395. doi: 10.1007/s11661-012-1563-0

    [87]

    Terzi S, Salvo L, Suery M, et al. In situ X-ray tomography observation of inhomogeneous deformation in semi-solid aluminium alloys[J]. Scripta Materialia, 2009, 61(5): 449 − 452. doi: 10.1016/j.scriptamat.2009.04.041

    [88]

    Suery M, Terzi S, Mireux B, et al. Fast in situ X-ray microtomography observations of solidification and semisolid deformation of Al-Cu alloys[J]. Journal of Materials Science, 2012, 64(1): 83 − 88. doi: 10.1007/s11837-011-0219-7

    [89]

    Wang Z Y, Wu S C, Kang G Z, et al. In-situ synchrotron X-ray tomography investigation of damage mechanism of an extruded magnesium alloy in uniaxial low-cycle fatigue with ratchetting[J]. Acta Materialia, 2021, 211: 116881. doi: 10.1016/j.actamat.2021.116881

    [90]

    Wu S C, Song Z, Kang G Z, et al. The Kitagawa-Takahashi fatigue diagram to hybrid welded AA7050 joints via synchrotron X-ray tomography[J]. International Journal of Fatigue, 2019, 125: 210 − 221. doi: 10.1016/j.ijfatigue.2019.04.002

    [91]

    Messager A, Junet A, Palin-Luc T, et al. In situ synchrotron ultrasonic fatigue testing device for 3D characterisation of internal crack initiation and growth[J]. Fatigue & Fracture of Engineering Materials & Structures, 2020, 43(3): 558 − 567.

    [92]

    Wu S C, Xiao T Q, Withers P J. The imaging of failure in structural materials by synchrotron radiation X-ray microtomography[J]. Engineering Fracture Mechanics, 2017, 182: 127 − 156. doi: 10.1016/j.engfracmech.2017.07.027

    [93]

    Wu S C, Yu C, Yu P S, et al. Corner fatigue cracking behavior of hybrid laser AA7020 welds by synchrotron X-ray computed microtomography[J]. Materials Science & Engineering: A, 2016, 651: 604 − 614.

    [94]

    Teranishi M, Kuwazuru O, Gennai S, et al. Three-dimensional stress and strain around real shape Si particles in cast aluminum alloy under cyclic loading[J]. Materials Science & Engineering: A, 2016, 678: 273 − 285.

    [95]

    Qu P, Toda H, Zhang H, et al. Local crack driving force analysis of a fatigue crack by a microstructural tracking method[J]. Scripta Materialia, 2009, 61(5): 489 − 492. doi: 10.1016/j.scriptamat.2009.05.004

    [96]

    Hu Y N, Ao N, Wu S C, et al. Influence of in situ micro-rolling on the improved strength and ductility of hybrid additively manufactured metals[J]. Engineering Fracture Mechanics, 2021, 253: 107868. doi: 10.1016/j.engfracmech.2021.107868

    [97]

    Zhang B, Huang H M, Wu S C, et al. In-situ X-ray tomography on permeability evolution of C/SiC porous ceramic for hypersonic vehicles[J]. Ceramics International, 2021, 47(19): 27770 − 27777. doi: 10.1016/j.ceramint.2021.06.204

    [98] 吴圣川, 吴正凯, 鲍泓翊玺, 等. 基于先进光源原位成像的超高周疲劳损伤试验系统: CN201910523647.5[P]. 2019 − 06 − 17.

    Wu Shengchuan, Wu Zhengkai, Bao Hongyixi, et al. Ultra-high cycle fatigue damage test system based on advanced light source in situ imaging: CN201910523647.5 [P]. 2019 − 06 − 17.

    [99] 吴圣川, 谢成, 吴正凯, 等. 一种采用X射线三维成像的悬臂式旋转弯曲原位疲劳试验机: CN201810852157.5[P]. 2018 − 07 − 30.

    Wu Shengchuan, Xie Cheng, Wu Zhengkai, et al. A cantilever rotating bending in situ fatigue testing machine using X-ray 3D imaging: CN201810852157.5 [P]. 2018 − 07 − 30.

    [100]

    Kan W H, Chiu L N S, Lim C V S, et al. A critical review on the effects of process-induced porosity on the mechanical properties of alloys fabricated by laser powder bed fusion[J]. Journal of Materials Science, 2022, 57: 9818 − 9865. doi: 10.1007/s10853-022-06990-7

    [101]

    Murakami Y, Takagi T, Wada K, et al. Essential structure of S-N curve: Prediction of fatigue life and fatigue limit of defective materials and nature of scatter[J]. International Journal of Fatigue, 2021, 146: 106138. doi: 10.1016/j.ijfatigue.2020.106138

    [102]

    Qian G A, Jian Z M, Qian Y J, et al. Very-high-cycle fatigue behavior of AlSi10Mg manufactured by selective laser melting: Effect of build orientation and mean stress[J]. International Journal of Fatigue, 2020, 138: 105696. doi: 10.1016/j.ijfatigue.2020.105696

    [103]

    Laursen C M, Dejong S A, Dickens S M, et al. Relationship between ductility and the porosity of additively manufactured AlSi10Mg[J]. Materials Science & Engineering: A, 2020, 795: 139922.

    [104]

    Ngnekou J N D, Nadot Y, Henaff G, et al. Fatigue properties of AlSi10Mg produced by additive layer manufacturing[J]. International Journal of Fatigue, 2019, 119: 160 − 172. doi: 10.1016/j.ijfatigue.2018.09.029

    [105]

    Romano S, Brueckner-Foit A, Brandao A, et al. Fatigue properties of AlSi10Mg obtained by additive manufacturing: Defect-based modelling and prediction of fatigue strength[J]. Engineering Fracture Mechanics, 2018, 187: 165 − 189. doi: 10.1016/j.engfracmech.2017.11.002

    [106]

    Wu S C, Liu Y X, Kang G Z, et al. On the fatigue performance and residual life of intercity railway axles with inside axle boxes[J]. Engineering Fracture Mechanics, 2018, 197: 176 − 191. doi: 10.1016/j.engfracmech.2018.04.046

    [107]

    Liu R Q, Kumar A, Chen Z Z, et al. A predictive machine learning approach for microstructure optimization and materials design[J]. Scientific Reports, 2015, 5(1): 11551. doi: 10.1038/srep11551

    [108]

    Zhang X C, Gong J G, Xuan F Z. A deep learning based life prediction method for components under creep, fatigue and creep-fatigue conditions[J]. International Journal of Fatigue, 2021, 148: 106236. doi: 10.1016/j.ijfatigue.2021.106236

    [109]

    Han Y L, Liu X, Dai S H. Fatigue life calculation of flawed structures - based on artificial neural network with special learning set[J]. International Journal of Pressure Vessels & Piping, 1998, 75(3): 263 − 269.

    [110]

    He L, Wang Z L, Akebono H, et al. Machine learning-based predictions of fatigue life and fatigue limit for steels[J]. Journal of Materials Science & Technology, 2021, 90: 9 − 19.

    [111]

    Zhang M, Sun C N, Zhang X, et al. High cycle fatigue life prediction of laser additive manufactured stainless steel: A machine learning approach[J]. International Journal of Fatigue, 2019, 128: 105194. doi: 10.1016/j.ijfatigue.2019.105194

    [112]

    Luo Y W, Zhang B, Feng X, et al. Pore-affected fatigue life scattering and prediction of additively manufactured Inconel 718: An investigation based on miniature specimen testing and machine learning approach[J]. Materials Science & Engineering: A, 2021, 802: 140693.

    [113]

    Bao H Y X, Wu S C, Wu Z K, et al. A machine-learning fatigue life prediction approach of additively manufactured metals[J]. Engineering Fracture Mechanics, 2021, 242: 107508. doi: 10.1016/j.engfracmech.2020.107508

    [114]

    Zhu C P, Li C, Wu D, et al. A titanium alloys design method based on high-throughput experiments and machine learning[J]. Journal of Materials Research & Technology, 2021, 11: 2336 − 2353.

    [115]

    Ivanna B, Oleksandr S, Kristian M. Optimization of process parameters for powder bed fusion additive manufacturing by combination of machine learning and finite element method: A conceptual framework[J]. Procedia CIRP, 2018, 67: 227 − 232. doi: 10.1016/j.procir.2017.12.204

    [116]

    Long X Y, Zhao S K, Jiang C, et al. Deep learning-based planar crack damage evaluation using convolutional neural networks[J]. Engineering Fracture Mechanics, 2021, 246: 107604. doi: 10.1016/j.engfracmech.2021.107604

    [117]

    Andrea R, Michael D S, Henry P, et al. Using machine learning and a data-driven approach to identify the small fatigue crack driving force in polycrystalline materials[J]. Npj Computational Materials, 2018, 4(1): 963 − 977.

    [118]

    Kusoglu I M, Bilal G, Stephan B. Research trends in laser powder bed fusion of Al alloys within the last decade[J]. Additive Manufacturing, 2020, 36: 101489. doi: 10.1016/j.addma.2020.101489

    [119]

    Li P Y, Zheng W D, Tang P J. Recent developments in aluminum alloy powders for selective laser melting[C]//2018 World Congress on Powder Metallurgy. Beijing, China, 2018: 1004 − 1014.

    [120] 黄建国, 任淑彬. 选区激光熔化成型铝合金的研究现状及展望[J]. 材料导报, 2021, 35(23): 23142 − 23152. doi: 10.11896/cldb.20060035

    Huang Jianguo, Ren Shubin. Research status and prospect of aluminum alloy manufactured by selective laser melting[J]. Materials Reports, 2021, 35(23): 23142 − 23152. doi: 10.11896/cldb.20060035

    [121] 梁立业, 曾献杰, 薛博宇. 稀土铒元素增强SLM专用AlSi10Mg铝合金粉末及其应用: CN201810421660.5[P]. 2018 − 05 − 04.

    Liang Liye, Zeng Xianjie, Xue Boyu, et al. AlSi10Mg aluminum alloy powder for SLM reinforced by erbium element and its application: CN201810421660.5 [P]. 2018 − 05 − 04.

    [122] 崔丽, 杨天野, 聂祚仁, 等. 一种AlSi10Mg粉末及激光选区熔化制造工艺: CN202011623507.4[P]. 2020 − 02 − 31.

    Cui Li, Yang Tianye, Nie Zuoren, et al. A manufacturing process of AlSi10Mg powder and selective laser melting: CN202011623507.4 [P]. 2020 − 02 − 31.

    [123] 陆皓, 李相洋, 余志远, 等. 一种激光选区熔化铝合金及增材制造方法: CN202011551875.2[P]. 2020 − 12 − 24.

    Lu Hao, Li Xiangyang, Yu Zhiyuan, et al. A selective laser melting aluminum alloy and additive manufacturing method: CN202011551875.2 [P]. 2020 − 12 − 24.

    [124] 夏玉峰, 张雪, 廖海龙, 等. 电弧熔丝增材制造钛/铝复合材料的组织与性能[J]. 焊接学报, 2021, 42(8): 18 − 24. doi: 10.12073/j.hjxb.20210422001

    Xia Yufeng, Zhang Xue, Liao Hailong, et al. Microstructure and properties of Ti/Al composites materials fabricated by wire and arc additive manufacturing[J]. Transactions of the China Welding Institution, 2021, 42(8): 18 − 24. doi: 10.12073/j.hjxb.20210422001

    [125]

    Della G R, Del S I, Caraviello A, et al. Selective laser melting of an Al-Si-Mg-Cu alloy: Feasibility and processing aspects[J]. Materials & Manufacturing Processes, 2021, 36(12): 1438 − 1449.

    [126]

    Aversa A, Lorusso M, Cattano G, et al. A study of the microstructure and the mechanical properties of an Al-Si-Ni alloy produced via selective laser melting[J]. Journal of Alloys & Compounds, 2017, 695: 1470 − 1478.

    [127]

    Boillat R, Isanaka S P, Liou F. The effect of nanostructures in aluminum alloys processed using additive manufacturing on microstructural evolution and mechanical performance behavior[J]. Crystals, 2021, 11(5): 524. doi: 10.3390/cryst11050524

    [128]

    Lin T C, Cao C Z, Sokoluk M, et al. Aluminum with dispersed nanoparticles by laser additive manufacturing[J]. Nature Communications, 2019, 10(1): 4124. doi: 10.1038/s41467-019-12047-2

    [129]

    Martin J H, Yahata B D, Hundley J M, et al. 3D printing of high-strength aluminium alloys[J]. Nature, 2017, 549(7672): 365 − 369. doi: 10.1038/nature23894

图(10)  /  表(1)
计量
  • 文章访问数:  710
  • HTML全文浏览量:  128
  • PDF下载量:  168
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-12
  • 网络出版日期:  2022-09-01
  • 刊出日期:  2022-09-29

目录

/

返回文章
返回