高级检索

铝/钢过渡接头搅拌摩擦增材制造成形与性能

王劲棋, 李峻臣, 赵耀邦, 谢聿铭, 孟祥晨, 黄永宪

王劲棋, 李峻臣, 赵耀邦, 谢聿铭, 孟祥晨, 黄永宪. 铝/钢过渡接头搅拌摩擦增材制造成形与性能[J]. 焊接学报, 2025, 46(2): 18-24. DOI: 10.12073/j.hjxb.20240905002
引用本文: 王劲棋, 李峻臣, 赵耀邦, 谢聿铭, 孟祥晨, 黄永宪. 铝/钢过渡接头搅拌摩擦增材制造成形与性能[J]. 焊接学报, 2025, 46(2): 18-24. DOI: 10.12073/j.hjxb.20240905002
WANG Jinqi, LI Junchen, ZHAO Yaobang, XIE Yuming, MENG Xiangchen, HUANG Yongxian. Formation and properties of aluminum-steel transition joints processed by friction stir additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(2): 18-24. DOI: 10.12073/j.hjxb.20240905002
Citation: WANG Jinqi, LI Junchen, ZHAO Yaobang, XIE Yuming, MENG Xiangchen, HUANG Yongxian. Formation and properties of aluminum-steel transition joints processed by friction stir additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(2): 18-24. DOI: 10.12073/j.hjxb.20240905002

铝/钢过渡接头搅拌摩擦增材制造成形与性能

基金项目: 国家自然科学基金资助项目(52175301)
详细信息
    作者简介:

    王劲棋,博士研究生;主要研究方向为铝合金搅拌摩擦增材制造;Email:hitfswwjq@163.com

    通讯作者:

    黄永宪,博士,教授,博士研究生导师;Email: yxhuang@hit.edu.cn.

  • 中图分类号: TG 453.9;TG 455

Formation and properties of aluminum-steel transition joints processed by friction stir additive manufacturing

  • 摘要:

    为了解决铝/钢异种金属连接强度不高,连接方法使用范围受限的问题,提出连续送丝搅拌摩擦增材制备铝/钢过渡接头的方法. 以5B06铝合金丝材为增材原料,3 mm厚的316L不锈钢板为基板,采用激光刻蚀辅助的手段,在单层厚度1.0 mm,沉积效率3.0 kg/h的参数下制备了成形与性能良好的铝/钢过渡接头. 结果表明,获得的增材层表面成形良好,丝材在热—机耦合作用下热塑化,并填充激光刻蚀槽. 铝/钢过渡界面未观察到缺陷,并在界面处发现厚度约为1.8 μm的金属间化合物层,实现了机械—冶金复合连接. 界面的抗剪强度达到110.0 MPa ± 4.7 MPa,相对于未表面处理的接头强度提升了18%. 钢侧断口均匀黏附铝合金,并观测到Fe2Al5和Fe4Al13金属间化合物. 接头为韧—脆混合型断裂模式,说明铝/钢过渡界面在机械互锁和冶金连接共同作用下实现了可靠连接. 该研究为铝/钢过渡接头的制备提供了新的解决思路.

    Abstract:

    Considering the difficulties of low strength and limited application of aluminum-steel joining, a wire-based friction stir additive manufacturing method was proposed and utilized for the aluminum-steel transition joints. 5B06 aluminum alloy wires and 3 mm 316L stainless steel sheets were used as feedstock and substrate, respectively. Aluminum-steel transition joints with good forming and excellent mechanical performance were manufactured with laser texture assistance at a deposition efficiency of 3.0 kg/h and a single-layer thickness of 1.0 mm. The wires were thermo-plasticized and filled into the textured groove. No defect was observed along the interface. Metallurgical bonding was achieved by Al/Fe intermetallic compounds (IMCs) layers with a thickness of 1.8 μm. The shear strength of the joint reached 110.0 MPa ± 4.7 MPa, which increased by 18% relative to the joints with untreated surfaces. Aluminum alloys and IMCs (Fe2Al5 and Fe4Al13) were noticed on the fracture of the steel side, indicating that sound bonding was achieved by mechanical and metallurgical joining. The fracture mode of the joints was tough-brittle composite fracture. This method showed great potential in manufacturing aluminum-steel transition joints.

  • 图  1   工艺原理示意图

    Figure  1.   Schematic of the process. (a) additive manufacturing of transition joints; (b) shearing process; (c) thermo-plasticizing and depositing process

    图  2   剪切测试示意图

    Figure  2.   Schematic of shear test

    图  3   不锈钢表面形貌

    Figure  3.   Surface morphology of the stainless steel plate. (a) the three-dimensional morphology image; (b) the profile line of groove

    图  4   接头宏观形貌

    Figure  4.   Macro-morphology of the transition joint

    图  5   增材件横截面形貌

    Figure  5.   Morphology of the cross-section of the joint. (a) macro morphology; (b) morphology of the interface

    图  6   界面SEM图像及线扫描结果

    Figure  6.   SEM image and the line scanning results of the interface. (a) SEM image; (b) line scanning result

    图  7   刻蚀槽内SEM图像及线扫描结果

    Figure  7.   SEM image and the line scanning results of the groove. (a) SEM image;(b) line scanning result

    图  8   接头显微硬度分布

    Figure  8.   Micro-hardness distribution of the joint

    图  9   剪切应力—位移曲线

    Figure  9.   The shear stress-distance curves

    图  10   断口SEM图像

    Figure  10.   SEM images of the fractures. (a) the macro morphology of the joint with the treated surface; (b) the magnified image (high); (c) the macro morphology of the joint with the untreated surface; (d) the magnified image (high)

    图  11   断裂过程示意图

    Figure  11.   Schematic diagram of the fracture mechanism. (a) crack propagation of the joint with untreated surface; (b) crack propagation of the joint with treated surface

    图  12   断口XRD分析

    Figure  12.   XRD analysis of fracture

    表  1   5B06铝合金化学成分表(质量分数,%)

    Table  1   Composition of 5B06 aluminum alloys

    Mg Mn Ti Fe Si Al
    7.55 0.57 0.18 0.17 0.24 余量
    下载: 导出CSV

    表  2   316L不锈钢板化学成分表(质量分数,%)

    Table  2   Composition of 316L stainless steel plates

    C Si Mn P S Cr Ni Mo Fe
    <0.08 <1.00 <2.00 <0.05 <0.03 16.00 ~ 18.00 10.00 ~ 14.00 99.70 余量
    下载: 导出CSV
  • [1] 迟露鑫, 黄岩, 许惠斌, 等. 铝钢电磁脉冲焊接界面特性及金属粒子分布分析[J]. 焊接学报, 2023, 44(5): 36 − 43. doi: 10.12073/j.hjxb.20220523001

    Chi Luxin, Huang Yan, Xu Huibin, et al. Analysis on interface characteristics and metal particle distributions in electromagnetic pulse welding with aluminum to steel[J]. Transactions of the China Welding Institution, 2023, 44(5): 36 − 43. doi: 10.12073/j.hjxb.20220523001

    [2]

    Huang Y, Huang T, Wan L, et al. Material flow and mechanical properties of aluminum-to-steel self-riveting friction stir lap joints[J]. Journal of Materials Processing Technology, 2019, 263: 129 − 137. doi: 10.1016/j.jmatprotec.2018.08.011

    [3] 徐灏, 曹睿, 樊丁. 铝/钢异种金属焊接接头腐蚀行为及其影响因素综述[J]. 焊接学报, 2024, 45(7): 116 − 128. doi: 10.12073/j.hjxb.20230718001

    Xu Hao, Cao Rui, Fan Ding. Corrosion behavior of aluminum/steel dissimilar metal welded joints and influential factors: A review[J]. Transactions of the China Welding Institution, 2024, 45(7): 116 − 128. doi: 10.12073/j.hjxb.20230718001

    [4]

    Lin S B, Song J L, Yang C L, et al. Brazability of dissimilar metals tungsten inert gas butt welding-brazing between aluminum alloy and stainless steel with Al-Cu filler metal[J]. Materials and Design, 2010, 31(5): 2637 − 2642. doi: 10.1016/j.matdes.2009.12.005

    [5]

    Yang Y, Luo Z, Zhang Y, et al. Dissimilar welding of aluminium to steel: A review[J]. Journal of Manufacturing Processes, 2024, 110: 376 − 397. doi: 10.1016/j.jmapro.2023.12.060

    [6] 李广, 石玗, 梁琪, 等. 激光毛化对铝/钢电弧熔钎焊接头界面与性能的影响[J]. 焊接学报, 2020, 41(5): 25 − 29. doi: 10.12073/j.hjxb.20190916002

    Li Guang, Shi Yu, Liang Qi, et al. Effect of laser texturing on the interface and properties of aluminum/steel arc fusion brazed joints[J]. Transactions of the China Welding Institution, 2020, 41(5): 25 − 29. doi: 10.12073/j.hjxb.20190916002

    [7] 黄永宪, 黄体方, 万龙, 等. 铝/钢异种材料搅拌摩擦焊研究进展[J]. 精密成形工程, 2018, 10(1): 23 − 30. doi: 10.3969/j.issn.1674-6457.2018.01.003

    Huang Yongxian, Huang Tifang, Wan Long, et al. Research progress of dissimilar friction stir welding between aluminum and steel[J]. Journal of Netshape Forming Engineering, 2018, 10(1): 23 − 30. doi: 10.3969/j.issn.1674-6457.2018.01.003

    [8]

    Zhang M, Liu F C, Xue P, et al. Fabrication of large-scale steel-aluminum components with homogenously distributed amorphous interfacial layer and enhanced bonding strength using modified friction stir additive manufacturing[J]. Journal of Materials Science & Technology, 2024, 194(20): 151 − 166.

    [9]

    Lenin A W A, Periyasamy N, George L. Influence of interlayer thickness (Zn) on the properties of Al 7020 FSW joints[J]. Materials Research, 2016, 19(4): 817 − 823. doi: 10.1590/1980-5373-MR-2016-0163

    [10]

    Liu J, Hao Z, Xie Y, et al. Interface stability and fracture mechanism of Al/Steel friction stir lap joints by novel designed tool[J]. Journal of Materials Processing Technology, 2022, 300: 117425. doi: 10.1016/j.jmatprotec.2021.117425

    [11]

    Zhang M, Liu F C, Liu Z Y, et al. Highly stable nanoscale amorphous microstructure at steel-aluminum interface enabled by a new solid-state additive manufacturing method[J]. Scripta Materialia, 2023, 227: 115300. doi: 10.1016/j.scriptamat.2023.115300

    [12]

    Liu F C, Dong P, Khan A S, et al. Amorphous interfacial microstructure and high bonding strength in Al-Fe bimetallic components enabled by a large-area solid-state additive manufacturing technique[J]. Journal of Materials Processing Technology, 2022, 308: 117721. doi: 10.1016/j.jmatprotec.2022.117721

    [13]

    Chen H, Chen J, Xu S, et al. Wire-based friction stir additive manufacturing toward field repairing[J]. Welding Journal, 2022, 101(9): 249 − 252. doi: 10.29391/2022.101.019

    [14]

    Chen H, Meng X, Chen J, et al. Wire-based friction stir additive manufacturing[J]. Additive Manufacturing, 2023, 70: 103557. doi: 10.1016/j.addma.2023.103557

    [15] 马潇天, 闫德俊, 孟祥晨, 等. 铝/钢搅拌摩擦焊金属间化合物调控研究进展[J]. 焊接学报, 2020, 41(7): 1 − 11. doi: 10.12073/j.hjxb.20200617001

    Ma Xiaotian, Yan Dejun, Meng Xiangchen, et al. Progress on the control of intermetallic compounds in aluminum/steel friction stir welding[J]. Transactions of the China Welding Institution, 2020, 41(7): 1 − 11. doi: 10.12073/j.hjxb.20200617001

    [16]

    Yang B, Li H, Sun H, et al. Towards enhanced mechanical performance of Al/steel welded-brazed joints via laser surface texturing modification[J]. Journal of Materials Research and Technology, 2023, 27(11): 5278 − 5290.

图(12)  /  表(2)
计量
  • 文章访问数:  111
  • HTML全文浏览量:  17
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-04
  • 网络出版日期:  2025-02-13
  • 刊出日期:  2025-02-24

目录

    /

    返回文章
    返回