Effect of interlayer spacing on the microstructure and mechanical properties of 2219 aluminum alloy by rod feed additive friction stir deposition
-
摘要:
为了提高航天高强韧2219-T8铝合金的固相增材制造性能,采用搅拌摩擦沉积工艺分别制备了层间距为1 mm,1.5 mm和2 mm的单道多层沉积件,分析了层间距对沉积件微观组织和力学性能的影响. 结果表明,层间距从2 mm 减小到1 mm 时,沉积件的致密无缺陷区域从24.5 mm扩大到33 mm,材料结合更加充分;同时沉积件的晶粒明显细化,平均晶粒尺寸从 3.69 μm 减小到 2.27 μm;沉积件的硬度没有明显变化,整体上硬度梯度增大,但均质性更好;沉积件构建方向的抗拉强度和断后伸长率分别提高了26 MPa和3%,而纵向的力学性能变化不大. 当层间距为1 mm时,沉积件表现出最优的材料性能,屈服强度达122 MPa,抗拉强度达207 MPa,断后伸长率达7%,平均硬度达75.6 HV.
Abstract:In order to improve the solid phase additive manufacturing performance of aerospace high strength and toughness 2219-T8 aluminum alloy, single-channel multi-layer deposition parts with interlayer spacing of 1 mm, 1.5 mm and 2 mm were prepared by friction stir deposition process in this study. The effects of interlayer spacing on the microstructure and mechanical properties of the deposited parts were analyzed. The results show that when the interlayer spacing was reduced from 2 mm to 1 mm, the dense defect-free area of the deposited part was expanded from 24.5 mm to 33 mm, and the material bonding was more sufficient. At the same time, the grains of the deposited parts were obviously refined, and the average grain size was reduced from 3.69 μm to 2.27 μm. The hardness of the deposited parts did not change significantly, and the overall hardness gradient increased, but the homogeneity was better. The tensile strength and elongation of the deposited parts in the construction direction increased by 26 MPa and 3 %, respectively, while the longitudinal mechanical properties did not change much. When the interlayer spacing was 1 mm, the deposited parts show the best material properties, the yield strength was 122 MPa, the tensile strength was 207 MPa, the elongation after fracture was 7%, and the average hardness was 75.6 HV.
-
-
表 1 铝合金的化学成分(质量分数,%)
Table 1 Chemical composition of 2219 aluminium ally
Cu Mn Si Zr Fe Mg Zn V Ti Al 5.8 ~ 6.8 0.2 ~ 0.4 ≤0.2 0.10 ~ 0.25 ≤0.3 0.04 0.1 0.05 ~ 0.15 0.02 ~ 0.10 余量 表 2 试验具体工艺参数
Table 2 Test the specific process parameters
层间距
s/mm转速
n/(r·min−1)横移速度
v1/(mm·min−1)送料速度
v2/(mm·min−1)1 450 280 120 1.5 450 280 140 2 450 300 195 表 3 不同方向和层间距沉积层的力学性能
Table 3 Mechanical properties of deposited layers with different directions and interlayer spacings
试样 屈服强度
RP0.2/MPa抗拉强度
Rm/MPa断后伸长率
A(%)1 mm纵向 153.3 288.3 17.3 1.5 mm纵向 150.0 282.0 17.0 2 mm纵向 162.3 269.2 15.6 1 mm构建方向 122.0 207.3 7.0 1.5 mm构建方向 130.0 207.5 7.2 2 mm构建方向 138.3 181.0 4.2 -
[1] 倪允强, 杨健楠, 方学伟, 等. 2219铝合金CMT电弧增材熔滴过渡行为[J]. 焊接学报, 2024, 45(2): 19 − 32. doi: 10.12073/j.hjxb.20230308003 Ni Yunqiang, Yang Jiannan, Fang Xuewei, et al. 2219 aluminum alloy CMT arc additive droplet transfer behavior[J]. Transactions of the China Welding Institution, 2024, 45(2): 19 − 32. doi: 10.12073/j.hjxb.20230308003
[2] 金恩沛. 火箭2219铝合金燃料贮箱封头旋压成形工艺优化与试验[D]. 秦皇岛: 燕山大学, 2022. Jin Enpei. Spinning process optimization and test of rocket 2219 aluminum alloy fuel tank head [D]. Qinhuangdao: Yanshan University, 2022.
[3] 刘立安, 赵舵, 陆伟, 等. 运载火箭贮箱箱底搅拌摩擦焊工艺研究[J]. 上海航天, 2020, 37(S2): 249 − 252. Liu Li'an, Zhao Duo, Lu Wei, et al. Research on friction stir welding process of carrier rocket tank bottom[J]. Shanghai Aerospace, 2020, 37(S2): 249 − 252.
[4] 谭永华, 赵剑, 张武昆, 等. 融合增材制造的液体火箭发动机创新设计方法与应用[J]. 火箭推进, 2023, 49(4): 1 − 16. doi: 10.3969/j.issn.1672-9374.2023.04.001 Tan Yonghua, Zhao Jian, Zhang Wukun, et al. Innovative design methods and applications of liquid rocket engines integrated with additive manufacturing[J]. Rocket Propulsion, 2023, 49(4): 1 − 16. doi: 10.3969/j.issn.1672-9374.2023.04.001
[5] 倪江涛, 隋阳, 刘涵, 等. 增材制造技术在国外航天动力系统中的应用[J]. 导弹与航天运载技术, 2022(3): 144 − 146. Ni Jiangtao, Sui Yang, Liu Han, et al. Application of additive manufacturing technology in foreign aerospace power systems[J]. Missile and Aerospace Delivery Technology, 2022(3): 144 − 146.
[6] Gopan V, Wins L D K, Surendran A. Innovative potential of additive friction stir deposition among current laser based metal additive manufacturing processes: A review[J]. Cirp Journal of Manufacturing Science and Technology, 2021, 32: 228 − 248. doi: 10.1016/j.cirpj.2020.12.004
[7] 杜文博, 李晓亮, 李霞, 等. 搅拌摩擦沉积增材技术研究现状[J]. 机械工程学报, 2024, 60(7): 374 − 384. Du Wenbo, Li Xiaoliang, Li Xia, et al. Research status of friction stir deposition additive technology[J]. Journal of Mechanical Engineering, 2024, 60(7): 374 − 384.
[8] 温琦, 刘景麟, 孟祥晨, 等. 搅拌摩擦增材制造关键技术与装备发展[J]. 焊接学报, 2022, 43(6): 1 − 10. doi: 10.12073/j.hjxb.20220103001 Wen Qi, Liu Jinglin, Meng Xiangchen, et al. Key technologies and equipment development of friction stir additive manufacturing[J]. Transactions of the China Welding Institution, 2022, 43(6): 1 − 10. doi: 10.12073/j.hjxb.20220103001
[9] Li Xia, Li Xiaoliang, Hu Shenheng, et al. Additive friction stir deposition: a review on processes, parameters, characteristics, and applications[J]. The International Journal of Advanced Manufacturing Technology, 2024, 133(3-4): 1111 − 1128. doi: 10.1007/s00170-024-13890-4
[10] 王瑞林, 杨新岐, 唐文珅, 等. 搅拌摩擦沉积增材2219铝合金组织及性能[J]. 航空材料学报, 2024, 44(1): 152 − 162. doi: 10.11868/j.issn.1005-5053.2023.000158 Wang Ruilin, Yang Xinqi, Tang Wenshen, et al. Microstructure and properties of friction stir deposited additive 2219 aluminum alloy[J]. Journal of Aeronautical Materials, 2024, 44(1): 152 − 162. doi: 10.11868/j.issn.1005-5053.2023.000158
[11] 张明, 李一迪, 汪辉, 等. 主轴转速对搅拌摩擦增材2219铝合金组织及性能的影响[J]. 中国有色金属学报, 2024, 34(4): 1215 − 1226. doi: 10.11817/j.ysxb.1004.0609.2023-44302 Zhang Ming, Li Yidi, Wang Hui, et al. Effect of spindle speed on microstructure and properties of friction stir additive 2219 aluminum alloy[J]. Chinese Journal of Nonferrous Metals, 2024, 34(4): 1215 − 1226. doi: 10.11817/j.ysxb.1004.0609.2023-44302
[12] 唐文珅, 杨新岐, 田超博, 等. 工艺参数对铝合金摩擦挤压增材组织及性能的影响[J]. 航空材料学报, 2022, 42(1): 59 − 67. doi: 10.11868/j.issn.1005-5053.2021.000166 Tang Wenshen, Yang Xinqi, Tian Chaobo, et al. Effect of process parameters on microstructure and properties of aluminum alloy friction extrusion additive[J]. Journal of Aeronautical Materials, 2022, 42(1): 59 − 67. doi: 10.11868/j.issn.1005-5053.2021.000166
[13] Williams M B, Zhu N, Palya N I, et al. Towards understanding the relationships between processing conditions and mechanical performance of the additive friction stir deposition process[J]. Metals, 2023, 13(10): 1663. doi: 10.3390/met13101663
[14] Griffiths R J, Garcia D, Song J, et al. Solid-state additive manufacturing of aluminum and copper using additive friction stir deposition: Process-microstructure linkages[J]. Materialia, 2021, 15: 100967. doi: 10.1016/j.mtla.2020.100967
[15] Phillips B J, Avery D Z, Liu T, et al. Microstructure-deformation relationship of additive friction stir-deposition Al–Mg–Si[J]. Materialia, 2019, 7: 100387. doi: 10.1016/j.mtla.2019.100387
[16] Garcia D, Hartley W D, Rauch H A, et al. In situ investigation into temperature evolution and heat generation during additive friction stir deposition: A comparative study of Cu and Al-Mg-Si[J]. Additive Manufacturing, 2020, 34: 101386. doi: 10.1016/j.addma.2020.101386
[17] Dong H, Li X, Xu K, et al. A rview on solid-state-based additive friction stir deposition[J]. Aerospace, 2022, 9(10): 565. doi: 10.3390/aerospace9100565
[18] Chen G, Wu K, Wang Y, et al. Effect of rotational speed and feed rate on microstructure and mechanical properties of 6061 aluminum alloy manufactured by additive friction stir deposition[J]. The International Journal of Advanced Manufacturing Technology, 2023, 127(3-4): 1165 − 1176. doi: 10.1007/s00170-023-11527-6
[19] Tang W, Yang X, Tian C, et al. Interfacial grain structure, texture and tensile behavior of multilayer deformation-based additively manufactured Al 6061 alloy[J]. Materials Characterization, 2023, 196: 112646. doi: 10.1016/j.matchar.2023.112646
[20] Zeng C, Ghadimi H, Ding H, et al. Microstructure evolution of Al6061 alloy made by additive friction stir deposition[J]. Materials, 2022, 15(10): 3676. doi: 10.3390/ma15103676
[21] Mason C J T, Rodriguez R I, Avery D Z, et al. Process-structure-property relations for as-deposited solid-state additively manufactured high-strength aluminum alloy[J]. Additive Manufacturing, 2021, 40: 101879. doi: 10.1016/j.addma.2021.101879
[22] Williams M B, Robinson T W, Williamson C J, et al. Elucidating the effect of additive friction stir deposition on the resulting microstructure and mechanical properties of magnesium alloy WE43[J]. Metals, 2021, 11(11): 1739.
[23] Rivera O G, Allison P G, Brewer L N, et al. Influence of texture and grain refinement on the mechanical behavior of AA2219 fabricated by high shear solid state material deposition[J]. Materials Science and Engineering: A, 2018, 724: 547 − 558. doi: 10.1016/j.msea.2018.03.088
[24] Abbasi M, Bagheri B, Abdoliahzadeh A, et al. A different attempt to improve the formability of aluminum tailor welded blanks (TWB) produced by the FSW[J]. International Journal of Material Forming, 2021, 14(5): 1189 − 1208. doi: 10.1007/s12289-021-01632-w
[25] 徐道芬. 2219变形铝合金多相组织调控及对拉伸性能各向异性的影响[D]. 长沙: 中南大学, 2022. Xu Daofen. 2219 wrought aluminum alloy multi-phase structure control and its effect on tensile anisotropy [D]. Changsha: Central South University, 2022.
[26] Ghadimi H, Talachian M, Ding H, et al. The effects of layer thickness on the mechanical properties of additive friction stir deposition-fabricated aluminum alloy 6061 parts[J]. Metals, 2024, 14(1): 101. doi: 10.3390/met14010101
[27] 吴涛, 谭振, 王立伟, 等. 异质双丝间接电弧增材制造Al-Mg-Cu合金组织与力学性能[J]. 焊接学报, 2023, 44(10): 64 − 70. doi: 10.12073/j.hjxb.20230305003 Wu Tao, Tan Zhen, Wang Liwei, et al. Microstructure and mechanical properties of Al-Mg-Cu alloy fabricated by heterogeneous twin-wire indirect arc additive manufacturing[J]. Transactions of The China Welding Institution, 2023, 44(10): 64 − 70 . doi: 10.12073/j.hjxb.20230305003
[28] 田超博, 杨新岐, 唐文珅, 等. 基于摩擦挤压增材制造的单道多层6061铝合金组织特征与力学性能[J]. 稀有金属材料与工程, 2022, 51(8): 2870 − 2880. Tian Chaobo, Yang Xinqi, Tang Wenshen, et al. Microstructure and mechanical properties of single-track multi-layer 6061 aluminum alloy fabricated by friction extrusion additive manufacturing[J]. Rare Metal materials and Engineering, 2022, 51(8): 2870 − 2880.
[29] Bagheri B, Abbasi M, Abdollahzadeh A, et al. A comparative study between friction stir processing and friction stir vibration processing to develop magnesium surface nanocomposites[J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27(8): 1133 − 1146. doi: 10.1007/s12613-020-1993-4
[30] Abbasi M, Givi M, Bagheri B. Application of vibration to enhance efficiency of friction stir processing[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(7): 1393 − 1400. doi: 10.1016/S1003-6326(19)65046-6