高级检索

管件磁脉冲焊接集磁器结构仿真优化

李岩, 杨德智, 王贵成, 李聚才, 刘翠荣

李岩, 杨德智, 王贵成, 李聚才, 刘翠荣. 管件磁脉冲焊接集磁器结构仿真优化[J]. 焊接学报, 2025, 46(1): 103-111. DOI: 10.12073/j.hjxb.20231025002
引用本文: 李岩, 杨德智, 王贵成, 李聚才, 刘翠荣. 管件磁脉冲焊接集磁器结构仿真优化[J]. 焊接学报, 2025, 46(1): 103-111. DOI: 10.12073/j.hjxb.20231025002
LI Yan, YANG Dezhi, WANG Guicheng, LI Jucai, LIU Cuirong. Structure simulation and optimization of magnetic pulse welding fieldshaper for tube welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(1): 103-111. DOI: 10.12073/j.hjxb.20231025002
Citation: LI Yan, YANG Dezhi, WANG Guicheng, LI Jucai, LIU Cuirong. Structure simulation and optimization of magnetic pulse welding fieldshaper for tube welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(1): 103-111. DOI: 10.12073/j.hjxb.20231025002

管件磁脉冲焊接集磁器结构仿真优化

基金项目: 山西省基础研究计划项目(202203021221149);山西省重点研发计划项目(202202150401016);山西省高等学校科技创新项目(2022L628)
详细信息
    作者简介:

    李岩,博士,教授,硕士研究生导师;研究方向为高能率焊接成型装备与工艺. Email: 2018023@tyust.edu.cn

  • 中图分类号: TG 439.9

Structure simulation and optimization of magnetic pulse welding fieldshaper for tube welding

  • 摘要:

    文中通过有限元仿真,研究了集磁器的工作原理,分析了磁脉冲焊接线圈放电电流大小和波形、焊接过程中磁场和电磁力分布;对比了集磁器结构强度以及铝管电磁缩径的大小. 结果表明,集磁器利用结构内外侧的高度差,使得感应电流从面积较大的外表面流向面积较小的内表面,从而实现感应电流的汇聚.集磁器对磁场分布的改善与其斜壁的倾斜角α成正相关,垂直型集磁器性能整体高于常规集磁器,低于曲线型集磁器;集磁器截面的形状对其性能也有一定的影响,α角为0的曲线型集磁器性能最好,相较于目前应用较多的常规集磁器,在焊接区域磁感应强度大小提高了12%,铝管的缩颈变形量高了24.9%.3种集磁器在结构强度上差异较小,均可以保证焊接的稳定性.文中对集磁器结构的设计可以提供一定的参考.

    Abstract:

    This article uses finite element simulation to study the working principle of the fieldshaper. It analyzes the magnitude and waveform of the coil current discharged in MPW, the distribution of magnetic field and electromagnetic force during the welding process, the structural strength of the fieldshaper and the size of the Al tube electromagnetic diameter reduction are compared. The results demonstrate that the fieldshaper utilizes the height difference between the inner and outer sides of the structure to facilitate the flow of induced current from the larger outer surface to the smaller inner surface, thereby achieving the convergence of induced current. The improvement of magnetic field distribution by the fieldshaper is positively correlated with the inclination angle α of its inclined wall, the performance of the vertical fieldshaper is higher than that of the conventional fieldshaper and lower than that of the curved fieldshaper. The shape of the cross-section also has a certain effect on its performance, curved fieldshaper structure with the α angle equal to 0 has the best performance, with a 12% increase in the magnitude of magnetic induction intensity in the welded region and a 24.9% higher deformation of the Al tube electromagnetic diameter reduction compared to the conventional fieldshaper, which is more commonly used today. The three types of fieldshaper have small differences in structural strength, all of which can ensure the stability of welding. This paper can provide a certain reference for the design of the fieldshaper structure.

  • 图  1   磁脉冲焊接示意图

    Figure  1.   Schematic diagram of magnetic pulse welding

    图  2   焊接结构示意图 (mm)

    Figure  2.   Schematic diagram of the welding structure. (a) fieldshaper structures; (b) welding model size

    图  3   集磁器工作原理

    Figure  3.   Working principle of fieldshaper. (a) numerical simulation model; (b) top view of the model; (c) magnetic induction intensity nephogram of fieldshaper; (d) fieldshaper current density nephogram

    图  4   不同集磁器线圈放电电流

    Figure  4.   The coil discharge currents of different fieldshapers. (a) conventional; (b) vertical; (c) curved

    图  5   观测点和截线示意图

    Figure  5.   Schematic diagram of observation points and intercept

    图  6   磁感应强度随时间变化曲线

    Figure  6.   Curves of magnetic induction intensity over time

    图  7   二维截线上磁感应强度分布

    Figure  7.   Magnetic induction intensity distribution along 2D intercept model. (a) structure No.5; (b) conventional fieldshapers; (c) vertical fieldshapers; (d) curved fieldshapers

    图  8   铝管所受电磁力云图

    Figure  8.   Electromagnetic force nephogram of aluminum tube

    图  9   集磁器形变

    Figure  9.   Fieldshaper deformation (a) structure No.5; (b) structure No.9; (c) structure No.11

    图  10   磁脉冲管件缩径成形云图

    Figure  10.   Diameter reduction forming nephogram of magnetic pulse tube. (a) structure No.5; (b) structure No.11

    图  11   管件焊接塑性变形过程

    Figure  11.   Plastic deformation process of tube welding

    表  1   Johnson-Cook材料模型参数

    Table  1   The Johnson-Cook material model parameters

    材料 屈服强度
    Rel/MPa
    强度硬化系数
    B
    应变速率常数
    C
    硬化指数
    n
    1060Al 100 182.3 0.01987 0.34
    T2Cu 90 292.0 0.02500 0.31
    下载: 导出CSV

    表  2   集磁器结构编号和尺寸

    Table  2   Fieldshaper structure number and size

    类型 编号 角度α/(°) 边长l/mm
    常规型12031.8
    23027.0
    34021.1
    45013.2
    5601.0
    垂直型6902.0
    79010.0
    89018.0
    99026.0
    109032.0
    曲线型11902.0
    121042.0
    下载: 导出CSV

    表  3   材料仿真参数

    Table  3   Material simulation parameters

    结构 材料 密度ρ/(kg·m−3) 杨氏模量E/Gpa 泊松比μ 电导率γ/(107S·m−1)
    线圈 CuCrZr 8930 117 0.34 4.52
    集磁器 CuCrZr 8930 117 0.34 4.52
    铝管 1060Al 2700 70 0.33 3.53
    铜管 T2Cu 8960 110 0.35 5.71
    下载: 导出CSV
  • [1] 王卫东, 秦钢林, 邢淑清, 等. 316L不锈钢与紫铜磁脉冲焊接组织性能分析[J]. 焊接学报, 2017, 38(10): 85 − 88. doi: 10.12073/j.hjxb.20151205001

    Wang Weidong, Qin Ganglin, Xing Shuqing, et al. Analysis of the micro-structure and properties of 316L stainless steel and copper magnetic pulse welding[J]. Transactions of the China Welding Institution, 2017, 38(10): 85 − 88. doi: 10.12073/j.hjxb.20151205001

    [2]

    Deng F X, Cao Q L, Han X T, et al. Principle and realization of an electromagnetic pulse welding system with a dual-stage coil[J]. International Journal of Applied Electromagnetics and Mechanics, 2018, 57(4): 389 − 398. doi: 10.3233/JAE-180006

    [3]

    Zhang Y, Babu S S, Prothe C, et al. Application of high velocity impact welding at varied different length scales[J]. Journal of Materials Processing Technology, 2011, 211(5): 944 − 952. doi: 10.1016/j.jmatprotec.2010.01.001

    [4]

    Yu H P, Jiang X, Zhang M F. An innovative coil for magnetic pulse welding of dissimilar sheet metals: numerical simulation and experiments[J]. Journal of Materials Processing Technology, 2024, 324: 118230. doi: 10.1016/j.jmatprotec.2023.118230

    [5]

    Yao Y H, Chen D D, Tang B W, et al. Miniaturized S-shaped flexible magnetic pulse welding coil design for engineering applications[J]. Journal of Manufacturing Processes, 2023, 104: 372 − 383. doi: 10.1016/j.jmapro.2023.09.026

    [6]

    Cui J J, Sun G G, Xu J R, et al. A study on the critical wall thickness of the inner tube for magnetic pulse welding of tubular Al-Fe parts[J]. Journal of Materials Processing Technology, 2016, 227: 138 − 146. doi: 10.1016/j.jmatprotec.2015.08.008

    [7]

    Yu H P, Li C F, Zhao Z H, et al. Effect of field shaper on magnetic pressure in electromagnetic forming[J]. Journal of Materials Processing Technology, 2005, 168(2): 245 − 249. doi: 10.1016/j.jmatprotec.2005.01.001

    [8]

    Zhang P, Kimchi M, Shao H, et al. Analysis of the electromagnetic impulse joining process with a field concentrator[C]// The 8th International Conference on Numerical Methods in Industrial Forming Processes, June 13-17, 2004, Columbus, Ohio. USA. New York: AIP Publishing, 2004.

    [9]

    Yan Z Q, Xiao A, Cui X H, et al. Magnetic pulse welding of aluminum to steel tubes using a field-shaper with multiple seams[J]. Journal of Manufacturing Processes, 2021, 65: 214 − 227. doi: 10.1016/j.jmapro.2021.03.037

    [10]

    Kumar R, Kore S D. Experimental studies on the effect of different field shaper geometries on magnetic pulse crimping in cylindrical configuration[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105(11): 4677 − 4690. doi: 10.1007/s00170-019-04555-8

    [11]

    Bembalge O B, Singh B, Panigrahi S K. Magnetic pulse welding of AA6061 and AISI 1020 steel tubes: numerical and experimental investigation[J]. Journal of Manufacturing Processes, 2023, 101: 128 − 140. doi: 10.1016/j.jmapro.2023.05.098

    [12]

    Shotri R, Faes K, De A. Magnetic pulse welding of copper to steel tubes-experimental investigation and process modelling[J]. Journal of Manufacturing Processes, 2020, 58: 249 − 258.

    [13]

    Li J H, Raoelison R N, Sapanathan T, et al. Determining the weldability window based on the interface morphologies formed during high-speed collision in magnetic pulse welding[J]. Science and Technology of Welding and Joining, 2022, 28(4): 259 − 267.

    [14] 袁嘉欣, 邵飞, 白林越, 等. 基于试验和数值模拟的TC1/1060/6061爆炸焊接复合板界面分析[J]. 焊接学报, 2023, 44(9): 81 − 87. doi: 10.12073/j.hjxb.20221020002

    Yuan Jiaxin, Shao Fei, Bao Linyue, et al. Research on the interface of composite plate via explosive welding TC1/1060/6061 based on experiments and numerical simulations[J]. Transactions of the China Welding Institution, 2023, 44(9): 81 − 87. doi: 10.12073/j.hjxb.20221020002

    [15]

    Li Z, Peng W X, Chen, Y Z, et al. Simulation and experimental analysis of Al/Ti plate magnetic pulse welding based on multi-seams coil[J]. Journal of Manufacturing Processes, 2022, 83: 290 − 299. doi: 10.1016/j.jmapro.2022.09.015

图(11)  /  表(3)
计量
  • 文章访问数:  82
  • HTML全文浏览量:  9
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-24
  • 网络出版日期:  2024-12-08
  • 刊出日期:  2025-01-24

目录

    /

    返回文章
    返回