Influence factors and control methods of droplet transfer in narrow gap P-GMAW overhead welding position
-
摘要:
管道窄间隙全位置焊接过程中,在接近仰焊位置容易出现焊接缺陷,制约了管道施工的质量和效率.文中针对管道自动焊仰焊位置成形差、可靠性低的问题,分析P-GMAW过程送丝速度、弧长修正、导电嘴到熔池距离等因素对熔滴过渡的影响规律.结果表明,增加弧长修正系数可以增大电弧对侧壁的热输入,能够缓解侧壁熔合不良的问题,但会使熔滴过渡路径难以控制.因此当焊枪运动到仰焊位置时,提高送丝速度有利于获得更小的熔滴、更高的过渡频率;降低导电嘴到熔池距离,可以增加电磁力、减小熔滴尺寸,从而更有利于仰焊位置熔滴向熔池的过渡,研究结果对于管道窄间隙焊接的工艺设计具有一定的指导意义.
Abstract:When conducting narrow gap all position welding of pipelines, welding defects are easy to occur near the overhead welding position, which restricts the quality and efficiency of pipeline construction. Aiming at the problem of poor formation and low reliability of overhead welding position in automatic pipe welding, this paper studies the influence of wire feeding speed, arc length correction, contact nozzle distance to molten pool and other factors on droplet transfer in P-GMAW process. It is found that increasing the arc length correction coefficient can increase the heat input of the arc to the side wall, which can alleviate the problem of poor side wall fusion, but will make the droplet transfer path difficult to control, Therefore, when the welding gun moves to the overhead welding position, short arc welding shall be adopted and the heat input to the side wall shall be supplemented by increasing the side stop time and swing; Increasing the wire feeding speed is conducive to obtaining smaller droplets, higher transfer frequency, reducing the distance between the contact tip and the molten pool, increasing the electromagnetic force and reducing the droplet size, which is more conducive to the transfer of droplets to the molten pool in overhead welding position. The research results have certain guiding significance for the process design of pipe narrow gap welding.
-
Keywords:
- droplet transfer /
- Swing arc /
- MIG welding /
- Narrow gap welding
-
-
-
[1] 陈树君, 卢振洋, 任福深, 等. 管道全位置自动焊机的专用电源及焊接工艺[J]. 焊接学报, 2009, 30(2): 13 − 16. Chen Shujun, Lu Zhenyang, Ren Fushen, et al. Special welding machine and welding process for all position automatic pipeline welding[J]. Transactions of the China Welding Institution, 2009, 30(2): 13 − 16.
[2] 丁玉明, 汪雄飞, 刘霞, 等. NiCrMoV转子钢窄间隙焊接接头显微组织及力学性能研究[J]. 上海金属, 2018, 40(1): 8 − 14. Ding Yuming, Wang Xiongfei, Liu Xia, et al. Investigation on the microstructure and mechanical properties of narrow gap welded joint of NiCrMoV rotor steel[J]. Shanghai Metals, 2018, 40(1): 8 − 14.
[3] 杨宽, 高辉, 周灿丰. 基于 Fluent 的窄间隙 TIG 焊枪结构优化设计[J]. 焊接, 2022(8): 39 − 43. Yang Kuan, Gao Hui, Zhou Canfeng. Optimization design of narrow gap TIG welding torch's structure based on Fluent[J]. Welding & Joining, 2022(8): 39 − 43.
[4] 郑韶先, 李晔楠, 史伟, 等. 超窄间隙焊接Q235/1Cr18Ni9Ti异种钢接头组织及力学性能[J]. 焊接学报, 2019, 40(8): 38 − 43. Zheng Shaoxian, Li Huanan, Shi Wei, et al. Microstructures and mechanical properties of welding joint of Q235/1Cr18Ni9Ti dissimilar steel with ultra-narrow-gap[J]. Transactions of the China Welding Institution, 2019, 40(8): 38 − 43.
[5] 冯靖, 武少杰, 高洪明, 等. 基于熔池受力的全位置STT打底焊分段工艺[J]. 焊接, 2022(2): 1 − 5. Feng Jing, Wu Shaojie, Gao Hongming, et al. Subsection process of all-position STT backing welding based on the force in molten pool[J]. Welding & Joining, 2022(2): 1 − 5.
[6] 贾传宝, 杜永鹏, 武传松, 等. 厚板窄间隙磁控电弧TIG焊接自动控制系统设计[J]. 华南理工大学学报(自然科学版), 2017, 45(9): 40 − 46. Jia Chuanbao, Du Yongpeng, Wu Chuansong, et al. Design of an automatic control system for magnetic controlled narrow-gap TIG arc welding of thick plates[J]. Journal of South China University of Technology(Natural Science Edition), 2017, 45(9): 40 − 46.
[7] 张阳, 吕小青, 徐连勇, 等. 工件倾角对脉冲MAG焊接熔池形态和焊缝尺寸的影响[J]. 焊接学报, 2019, 40(10): 36 − 42. Zhang Yang, Lü Xiaqing, Xu Lianyong, et al. Effect of workpiece inclination on weld pool shape and weld forming in pulsed MAG welding[J]. Transactions of the China Welding Institution, 2019, 40(10): 36 − 42.
[8] 徐刚, 张天雷, 何林基, 等. 窄间隙摆动电弧数值模拟[J]. 轻工机械, 2021, 39(3): 54 − 58. Xu Gang, Zhang Tianlei, He Linji, et al. Numerical simulation of welding arc with narrow gap[J]. Light Industry Machinery, 2021, 39(3): 54 − 58.
[9] 徐望辉, 林三宝, 杨春利, 等. 摆动电弧窄间隙GMAW熔滴过渡规律[J]. 焊接学报, 2017, 38(2): 109 − 114. Xu Wanghui, Lin Sanbao, Yang Chunli, et al. Study on droplet transfer of swing arc narrow gap GMAW[J]. Transactions of the China Welding Institution, 2017, 38(2): 109 − 114.
[10] 王定洲, 陈刚, 张宇, 等. 空间焊接位置对熔滴过渡的影响[J]. 江苏科技大学学报(自然科学版), 2018, 32(5): 633 − 636. Wang Dingzhou, Chen Gang, Zhang Yu, et al. Effect of spatial welding positions on molten droplet transfer[J]. Journal of Jiangsu University of Science and Technology(Natural Science Edition), 2018, 32(5): 633 − 636.
[11] Alireza D T. Neutralizing the effect of the angle variations on the drop detachment in automatic GMAW system[J]. The International Journal of Advanced Manufacturing Technology, 2010, 54(1-4): 123 − 137.
-
期刊类型引用(3)
1. 刘秀航,叶广文,黄宇辉,张艳喜,冯桑,高向东. 激光-MIG复合焊根部驼峰缺陷预测. 机械制造文摘(焊接分册). 2023(03): 18-24 . 百度学术
2. 刘秀航,叶广文,黄宇辉,张艳喜,冯桑,高向东. 激光-MIG复合焊根部驼峰缺陷预测. 焊接学报. 2022(12): 47-52+99+115-116 . 本站查看
3. 谢非,朱腾飞,杨继全,余圣甫,史建军,刘益剑. 基于边缘夹角附加损失函数的熔池形貌检测方法. 焊接学报. 2021(07): 82-90+103-104 . 本站查看
其他类型引用(2)