高级检索

焊丝成分对镍基高温合金TIG焊焊接性的影响

王诗洋, 刘士伟, 侯星宇, 孙元, 曹楠, 石万鹏

王诗洋, 刘士伟, 侯星宇, 孙元, 曹楠, 石万鹏. 焊丝成分对镍基高温合金TIG焊焊接性的影响[J]. 焊接学报, 2023, 44(3): 31-36, 60. DOI: 10.12073/j.hjxb.20220401001
引用本文: 王诗洋, 刘士伟, 侯星宇, 孙元, 曹楠, 石万鹏. 焊丝成分对镍基高温合金TIG焊焊接性的影响[J]. 焊接学报, 2023, 44(3): 31-36, 60. DOI: 10.12073/j.hjxb.20220401001
WANG Shiyang, LIU Shiwei, HOU Xingyu, SUN Yuan, CAO Nan, SHI Wanpeng. Effect of wire composition on weldability of a Ni-based superalloy welded by TIG method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(3): 31-36, 60. DOI: 10.12073/j.hjxb.20220401001
Citation: WANG Shiyang, LIU Shiwei, HOU Xingyu, SUN Yuan, CAO Nan, SHI Wanpeng. Effect of wire composition on weldability of a Ni-based superalloy welded by TIG method[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(3): 31-36, 60. DOI: 10.12073/j.hjxb.20220401001

焊丝成分对镍基高温合金TIG焊焊接性的影响

基金项目: 国家科技重大专项资助项目(J2019-VI-0018-0133);沈阳市科技计划资助项目(20-203-5-19);沈抚改革创新示范区产业创新局揭榜挂帅科技攻关专项资助项目(2021JH15);镍钴资源综合利用国家重点实验室开放课题(GZSYS-KY-2020-010);佛山中国科学院产业技术研究院产业化创新团队专项资金资助项目(ZK-TD-2019-04)
详细信息
    作者简介:

    王诗洋,博士,助理研究员;主要研究高温合金焊接方向;Email: shiyangwang16b@imr.ac.cn

    通讯作者:

    孙元,博士,研究员;Email: yuansun@imr.ac.cn

  • 中图分类号: TG 454

Effect of wire composition on weldability of a Ni-based superalloy welded by TIG method

  • 摘要: 解决K4951合金的熔焊修复是实现新一代航空发动机机匣研制的关键.针对K4951合金中的难熔元素含量高、可焊性较差的问题,本文根据该合金的成分特点,通过调整母材中的沉淀强化元素和固溶强化元素,设计出7种成分的焊丝,并利用扫描电镜、透射电镜、电子探针和热力学软件等研究手段分析了合金元素对焊接接头的裂纹敏感性和持久性能的影响.结果表明,在母材成分的基础上提高焊丝中B元素含量至0.04%,接头的裂纹敏感性显著增加,焊缝金属加工即断裂;提高Nb元素含量可提升晶界液膜的愈合能力,有效的降低焊缝样品的焊接敏感性,接头的持久寿命由15 h提升至41 h;降低Cr,Mo元素的含量可以在一定程度上提高的合金的裂纹敏感性,使接头的持久寿命提升;提高Al元素的含量,同时调控Nb,Cr,Mo等元素可有效抑制裂纹形成,并提升了焊缝金属的高温服役性能.研究结果可为后续沉淀强化镍基高温合金的焊接性研究提供一定的参考价值.
    Abstract: To solve the fusion welding problem of K4951 alloy is the key to realize the development of a new generation of aero-engine casing. Since the K4951 alloy contains the high content of refractory elements and the weldability is poor, this study designed seven kinds of welding wires by adjusting the precipitation-strengthening elements and solid-solution strengthening elements according to the composition characteristics of the alloy. The effects of alloying elements on crack sensitivity and creep properties of the welding joints were analyzed by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), electro-probe microanalyzer (EPMA) and thermal-calc software. Results show that when the content of B was increased to 0.04%, the crack sensitivity of the joint was significantly increased, and the weld metal is fractured. Increasing the Nb content can improve the healing ability of the liquid film in grain boundary, which can reduce the welding sensitivity of welding samples, and increase the creep life of joints from 15 h to 41 h. Reducing the content of Cr and Mo can increase the crack sensitivity of the alloy to a certain extent and increase the creep life of the joint. Increasing Al content and regulating the Nb, Cr, Mo and other elements can effectively inhibit crack formation and improve the high-temperature service performance of the welding joint. The results of this study can provide an important reference value for the subsequent research on weldability of precipitation strengthened nickel-based superalloy.
  • 图  1   石英管及在型壳中的状态

    Figure  1.   Quartz tube and its state in shell. (a) quartz tube; (b) quartz tube in the shell

    图  2   焊接接头的宏观形貌及裂纹形貌

    Figure  2.   Microstructure of the joint showing the precipitates and the cracks. (a) macro morphology of the welding zone; (b) microstructure of the welding zone; (c) morphology of HAZ-cracks (d) precipitates magnification of the welding zone

    图  3   第二相的TEM明场像及相应的衍射谱和SEM图像

    Figure  3.   TEM bright field image of the second phases and corresponding diffraction spectrum and SEM image. (a) skeleton precipitate; (b) particle precipitation phase; (c) chain like precipitation phase; (d) SEM image of the second phases

    图  4   焊缝内各类第二相的EPMA定量分析

    Figure  4.   EPMA analysis of various second phases

    图  5   基于焊丝成分的焊缝凝固Thermal-calc模拟结果

    Figure  5.   Solidification process of the welding joint simulated by Thermal-Calc based on the wire composition

    图  6   不同焊丝焊接K4951合金裂纹敏感性与性能

    Figure  6.   Crack sensitivity and properties of K4951 alloy welded by different wires

    图  7   不同焊缝内沉淀强化相的形貌及含量

    Figure  7.   Morphology and content of γ′ in different welding joints. (a) No. 1; (b) No. 6; (c) No. 7

    图  8   不同焊丝焊缝熔化区元素分配系数

    Figure  8.   Element distribution coefficient of the weld fusion zone of different welding joints

    图  9   合金元素固液分配曲线的理论计算结果

    Figure  9.   Theoretical calculation results of solid-liquid distribution curves of different alloying elements

    图  10   不同焊丝焊缝内晶界的形貌

    Figure  10.   Morphology of grain boundaries in different welding joints. (a) No. 3; (b) No. 7; (c) No. 2

    表  1   母材及焊丝合金元素成分(质量分数,%)

    Table  1   Compositions of base metal and welding wire

    编号合金元素
    CoCrAlNbMoWCB
    15105.51.83.530.10.005
    25105.51.83.530.10.04
    35105.52.43.530.10.005
    4585.51.83.530.10.005
    55105.51.82.530.10.005
    65106.21.83.530.10.005
    7586.22.42.530.10.005
    下载: 导出CSV
  • [1] 温登哲, 陈予恕. 航空发动机机匣动力学研究进展与展望[J]. 动力学与控制学报, 2013, 11(1): 12 − 19. doi: 10.6052/1672-6553-2013-003

    Wen Dengzhe, Chen Yushu. Review and prospect on the research of aero-engine casing dynamics[J]. Journal of Aerospace Power, 2013, 11(1): 12 − 19. doi: 10.6052/1672-6553-2013-003

    [2] 于志涌. 航空发动机机匣加工工艺探讨[J]. 科技创新与应用, 2013(17): 103.

    Yu Zhiyong. Discussion on machining technology of aircraft engine casing[J]. Technology Innovation and Application, 2013(17): 103.

    [3] 许章华, 谢志雄, 康茂东, 等. K4169高温合金铸件铸造缺陷修复及疲劳性能研究[J]. 材料导报, 2021, 358(22): 22115 − 22120.

    Xu Zhanghua, Xie Zhixiong, Kang Maodong, et al. Study of casting defect repair and fatigue performance of K4169 superalloy casting[J]. Material Reports, 2021, 358(22): 22115 − 22120.

    [4]

    Yu J J, Lian Z, Chu Z, et al. Properties and microstructures of M951 alloy after long-term exposure[J]. Materials Science & Engineering A, 2010, 527(7-8): 1896 − 902.

    [5] 崔路卿. M951G镍基高温合金微观组织和力学性能研究[D]. 安徽: 中国科学技术大学, 2019.

    Cui Luqing. Investigation of microstructures and mechanical properties of M951G nickle-base superalloy[D]. Anhui: University of Science and Technology of China, 2019.

    [6] 郭枭, 徐锴, 魏超, 等. GH2132高温合金熔敷金属结晶裂纹敏感性[J]. 焊接学报, 2022, 43(11): 30 − 35 + 125 + 164. doi: 10.12073/j.hjxb.20220623002

    Guo Xiao, Xu Kai, Wei Chao, et al. Solidification crack sensitivity of GH2132 superalloy deposited metal[J]. Transactions of The China Welding Institution, 2022, 43(11): 30 − 35 + 125 + 164. doi: 10.12073/j.hjxb.20220623002

    [7] 王帅, 付立铭, 袁勇, 等. NiFe基合金激光增材制造热裂纹形成机理及调控[J]. 焊接学报, 2022, 43(5): 8 − 13 + 113-114. doi: 10.12073/j.hjxb.20220101001

    Wang Shuai, Fu Liming, Yuan Yong, et al. Mechanism and elimination of hot cracks in laser additive manufacturing of NiFe based superalloy[J]. Transactions of The China Welding Institution, 2022, 43(5): 8 − 13 + 113-114. doi: 10.12073/j.hjxb.20220101001

    [8] 王磊, 李赫, 黄勇, 等. 各向异性对焊接凝固裂纹影响规律的相场法模拟[J]. 焊接学报, 2021, 42(12): 83 − 86 + 101-102. doi: 10.12073/j.hjxb.20210309001

    Wang Lei, Li He, Huang Yong, et al. Phase field investigation on solidification cracking susceptibility in the molten pool under different anisotropy[J]. Transactions of The China Welding Institution, 2021, 42(12): 83 − 86 + 101-102. doi: 10.12073/j.hjxb.20210309001

    [9]

    Yuan C, Ke Z, Jian H, et al. Characterization of heat affected zone liquation cracking in laser additive manufacturing of Inconel 718[J]. Materials & Design, 2015, 90(4): 586 − 94.

    [10]

    Xia Wanshun, Zhao Xinbao, Yue Liang, et al. A review of composition evolution in Ni-based single crystal superalloys[J]. Journal of Materials Science & Technology, 2020, 44(9): 76 − 95.

    [11]

    Qian M, Lippold J C. The effect of annealing twin-generated special grain boundaries on HAZ liquation cracking of nickel-base superalloys[J]. Acta Materialia, 2003, 51(12): 3351 − 3361. doi: 10.1016/S1359-6454(03)00090-9

    [12]

    Du Beining, Shi Zhiwu, Yang Jinxia, et al. M5B3 boride at the grain boundary of a nickel-based superalloy[J]. Journal of Materials Science & Technology, 2016, 32(3): 265 − 270.

    [13]

    Hu Honglei, Zhao Mingjiu, Rong Lijian. Retarding the precipitation of η phase in Fe-Ni based alloy through grain boundary engineering[J]. Journal of Materials Science & Technology, 2020, 47(12): 152 − 161.

    [14]

    Xue Junliang, Guo Wei, Yang Jin, et al. In-situ observation of microcrack initiation and damage nucleation modes on the HAZ of laser-welded DP1180 joint[J]. Journal of Materials Science & Technology, 2023, 148(1): 138 − 149.

    [15]

    Sterle W, Krause S, Moelders T, et al. Influence of heat treatment on microstructure and hot crack susceptibility of laser-drilled turbine blades made from René 80[J]. Materials Characterization, 2008, 59(11): 1564 − 71. doi: 10.1016/j.matchar.2008.01.021

    [16]

    Wen Mingyu, Sun Yuan, Yu Jinjiang, et al. Amelioration of weld-crack resistance of the M951 superalloy by engineering grain boundaries[J]. Journal of Materials Science & Technology, 2021, 78(19): 260 − 267.

    [17] 葛华龙. 镍基高温合金第二相微观结构与作用机理研究[D]. 安徽: 中国科学技术大学, 2021.

    Ge Hualong. Transmission electron microscopy investigation on the secondary phases of nickel-based superalloy[D]. Anhui: University of Science and Technology of China, 2021.

图(10)  /  表(1)
计量
  • 文章访问数:  427
  • HTML全文浏览量:  59
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-31
  • 网络出版日期:  2023-03-10
  • 刊出日期:  2023-03-24

目录

    /

    返回文章
    返回