Effect of heat treatment on the microstructure and mechanical properties of wire arc additively manufactured ferrite/martensitic steel for nuclear applications
-
摘要: 采用电弧熔丝增材制造(wire and arc additive manufacturing, WAAM)技术制备了低活化铁素体/马氏体钢(reduced activation ferrite/martensite steel,RAFM钢),通过光学显微镜、扫描电子显微镜和透射电子显微镜等观察微观组织变化,通过拉伸试验进行力学性能测试,研究了热处理工艺对其微观组织和力学性能的影响.结果表明,打印态的RAFM钢微观组织为铁素体 + 回火马氏体的双相组织,平均晶粒尺寸约为1.51 μm. 经过热处理,RAFM钢的晶粒尺寸没有明显增长(1.84 μm),并在微观组织中保留了高密度位错. 此外,热处理后高数密度TiO2二次相纳米颗粒在基体中析出,并弥散分布在基体中,其尺寸在5 ~ 10 nm. 热处理后的RAFM钢抗拉强度显著提高,断后伸长率略微下降,其室温抗拉强度为1080 MPa,在650 ℃下测试的抗拉强度仍可达285 MPa.
-
关键词:
- 电弧熔丝增材制造 /
- 低活化铁素体/马氏体钢 /
- 热处理 /
- 显微组织
Abstract: Reduced activation ferritic/martensitic (RAFM) steel was fabricated by wire and arc additive manufacturing (WAAM) technology. The microstructural evolution was observed by optical microscope, scanning electron microscope and transmission electron microscope and the mechanical properties were tested by a tensile tester to study the effect of heat treatment on the microstructure and mechanical properties of WAAM RAFM steel. The results showed that the microstructure of as-built RAFM steel consisted of dual phases of ferrite and tempered martensite and the average grain size was about 1.51 μm. After heat treatment, the RAFM steel showed no significant increase in grain size (1.84 μm), and high-density dislocations were retained in the microstructure. In addition, a large number of TiO2 secondary phase nanoparticles, with the grain size of 5 − 10 nm, have precipitated and dispersed in the matrix after the heat treatment. The tensile strength of WAAM RAFM steel was significantly improved after heat treatment while the elongation after fracture was slightly reduced. The tensile strength of RAFM steel after heat treatment was 1080 MPa at room temperature and even at a temperature of 650 ℃, it can still reach about 285 MPa. -
-
表 1 0.3Ti-RAFM药芯焊丝和打印试样的化学成分(质量分数,%)
Table 1 Chemical compositions of 0.3Ti-RAFM flux-cored wire and printed samples
材料 Cr W Mn Ti Si C O Fe 药芯焊丝 9.01 1.50 0.80 0.30 0.20 0.08 0.033 余量 0.3Ti-RAFM 8.92 1.46 0.62 0.24 0.12 0.06 0 .047 余量 -
[1] Shang Z, Ding Jie, Fan C, et al. Tailoring the strength and ductility of T91 steel by partial tempering treatment[J]. Acta Materialia, 2019, 169: 209 − 224. doi: 10.1016/j.actamat.2019.02.043
[2] Hishinuma A, Kohyama A, Klueh R L, et al. Current status and future R&D for reduced-activation ferritic/martensitic steels[J]. Journal of Nuclear Materials, 1998, 258: 193 − 204.
[3] Kano S, Yang H, Suzue R, et al. Precipitation of carbides in F82H steels and its impact on mechanical strength[J]. Nuclear Materials and Energy, 2016, 9: 331 − 337. doi: 10.1016/j.nme.2016.09.017
[4] Chen J, Liu C, Liu Y, et al. Effects of tantalum content on the microstructure and mechanical properties of low-carbon RAFM steel[J]. Journal of Nuclear Materials, 2016, 479: 295 − 301. doi: 10.1016/j.jnucmat.2016.07.029
[5] Hu X, Huang L, Yan W, et al. Evolution of microstructure and changes of mechanical properties of CLAM steel after long-term aging[J]. Materials Science & Engineering: A, 2013, 586: 253 − 258.
[6] Sahoo K C, Vanaja J, Parameswaran P, et al. Effect of thermal ageing on microstructure, tensile and impact properties of reduced activated ferritic-martensitic steel[J]. Materials Science & Engineering: A, 2017, 686: 54 − 64.
[7] 易果强, 周亚举, 张鹏, 等. 电弧熔丝增材制造ODS钢的成型工艺及组织性能[J]. 材料热处理学报, 2022, 43(6): 128 − 136. Yi Guoqiang, Zhou Yaju, Zhang Peng, et al. Forming process, microstructure and properties of ODS steel prepared by wire arc additive manufacturing[J]. Journal of Materials Heat Treatment, 2022, 43(6): 128 − 136.
[8] 陈树君, 张所来, 黄宁, 等. 电弧熔丝脉冲GTAW熔滴过渡行为分析[J]. 焊接学报, 2017, 38(1): 17 − 21. Chen Shujun, Zhang Suolai, Huang Ning, et al. Analysis of droplet transfer behavior of wire and arc pulse GTAW[J]. Transactions of the China Welding Institution, 2017, 38(1): 17 − 21.
[9] 苗玉刚, 王清龙, 李春旺, 等. 中厚板钛合金激光-CMT复合焊接工艺特性分析[J]. 焊接学报, 2022, 43(8): 42 − 47. Miao Yugang, Wang Qinglong, Li Chunwang, et al. Characterization of laser arc hybrid welding process for medium-thick titanium alloy plate[J]. Transactions of the China Welding Institution, 2022, 43(8): 42 − 47.
[10] 郝婷婷, 李承德, 王旭, 等. 钇含量对电弧增材制造2319铝合金组织与性能的影响[J]. 焊接学报, 2022, 43(7): 49 − 56. Hao Tingting, Li Chengde, Wang Xu, et al. Effect of yttrium content on microstructure and properties of 2319 aluminum alloy fabricated by wire arc additive manufacturing[J]. Transactions of the China Welding Institution, 2022, 43(7): 49 − 56.
[11] Jia Jinlong, Zhao Yue, Dong Minghua, et al. Numerical simulation on residual stress and deformation for WAAM parts of aluminum alloy based on temperature function method[J]. China Welding, 2020, 29(2): 1 − 8.
[12] Dharmendra C, Hadadzadeh A, Amirkhiz B S, et al. Microstructural evolution and mechanical behavior of nickel aluminum bronze Cu-9Al-4Fe-4Ni-1Mn fabricated through wire-arc additive manufacturing[J]. Additive Manufacturing, 2019, 30: 100872. doi: 10.1016/j.addma.2019.100872
[13] Belotti L P, Dommelen J A W, Geers M G D, et al. Microstructural characterisation of thick-walled wire arc additively manufactured stainless steel[J]. Journal of Materials Processing Technology, 2022, 299: 117373. doi: 10.1016/j.jmatprotec.2021.117373
[14] 左秀荣, 陈蕴博, 王淼辉, 等. 铁素体/马氏体双相钢的组织及性能[J]. 材料热处理学报, 2010, 31(1): 29 − 34. Zuo Xiurong, Chen Yunbo, Wang Miaohui, et al. Microstructure and mechanical properties of ferrite/martensite dual-phase steel[J]. Journal of Materials Heat Treatment, 2010, 31(1): 29 − 34.
[15] Zhou Y J, Yin S M, Jiang Y, et al. Wire and arc additive manufacturing fabrication of ODS-RAMF steels and preliminary evaluation on microstructures and mechanical properties[J]. Journal of Nuclear Materials, 2022, 340: 154068.
[16] He H, Huang S, Wang H, et al. Isothermal holding processes of a reduced activation ferritic/martensitic steel to form a bainitic/martensitic multiphase microstructure and its mechanical properties[J]. Materials Science & Engineering: A, 2021, 822: 141645.
[17] Tanvir A, Ahsan M, Seo G, et al. Phase stability and mechanical properties of wire + arc additively manufactured H13 tool steel at elevated temperatures[J]. Journal of Materials Science & Technology, 2021, 67(8): 80 − 94. doi: 10.1016/j.jmst.2020.04.085
[18] Morito S, Edamatsu Y, Ichinotani K, et al. Quantitative analysis of three-dimensional morphology of martensite packets and blocks in iron-carbon-manganese steels[J]. Journal of Alloys Compounds, 2013, 577: S587 − S592. doi: 10.1016/j.jallcom.2012.02.004
[19] Dou P, Jiang S M, Qiu L L, et al. Effects of contents of Al, Zr and Ti on oxide particles in Fe-15Cr-2W-0.35Y2O3 ODS steels[J]. Journal of Nuclear Materials, 2020, 531: 152025. doi: 10.1016/j.jnucmat.2020.152025
[20] Arkhurst B M, Bae J H, Na M Y, et al. Effect of tellurium on the microstructure and mechanical properties of Fe-14Cr oxide-dispersion-strengthened steels produced by additive manufacturing[J]. Journal of Materials Science and Technology, 2021, 95: 114 − 126. doi: 10.1016/j.jmst.2021.03.068
[21] Zhang Y, Liu D W, Wang Y, et al. A 9%Cr ODS steel composite material reinforced by Ti layers[J]. Materials Science & Engineering: A, 2016, 676: 253 − 262.
[22] Zhou Y J, Yin S M, Chen Z L, et al. Wire and arc additive manufacturing of inner-channel structured RAFM: Effect of microalloying Ti on microstructure and mechanical properties[J]. Fusion Engineering and Design, 2022, 184: 113296. doi: 10.1016/j.fusengdes.2022.113296
[23] Liu X Y, Sui Y, Li J B, et al. Laser metal deposited steel alloys with uniform microstructures and improved properties prepared by addition of small amounts of dispersed Y2O3 nanoparticles[J]. Materials Science & Engineering: A, 2021, 806: 140827.