高级检索

钇含量对电弧增材制造2319铝合金组织与性能的影响

郝婷婷, 李承德, 王旭, 翟玉春, 常云龙

郝婷婷, 李承德, 王旭, 翟玉春, 常云龙. 钇含量对电弧增材制造2319铝合金组织与性能的影响[J]. 焊接学报, 2022, 43(7): 49-56. DOI: 10.12073/j.hjxb.20220416001
引用本文: 郝婷婷, 李承德, 王旭, 翟玉春, 常云龙. 钇含量对电弧增材制造2319铝合金组织与性能的影响[J]. 焊接学报, 2022, 43(7): 49-56. DOI: 10.12073/j.hjxb.20220416001
HAO Tingting, LI Chengde, WANG Xu, ZHAI Yuchun, CHANG Yunlong. Effect of yttrium content on microstructure and properties of 2319 aluminum alloy fabricated by wire arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(7): 49-56. DOI: 10.12073/j.hjxb.20220416001
Citation: HAO Tingting, LI Chengde, WANG Xu, ZHAI Yuchun, CHANG Yunlong. Effect of yttrium content on microstructure and properties of 2319 aluminum alloy fabricated by wire arc additive manufacturing[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2022, 43(7): 49-56. DOI: 10.12073/j.hjxb.20220416001

钇含量对电弧增材制造2319铝合金组织与性能的影响

基金项目: 国家自然科学基金资助项目(51864018,52074134)
详细信息
    作者简介:

    郝婷婷,博士研究生;主要从事电弧增材制造铝合金工艺等研究;Email: haott211@sina.com

    通讯作者:

    李承德,博士,助理研究员;Email: lichengde20031698@126.com.

  • 中图分类号: TG 401

Effect of yttrium content on microstructure and properties of 2319 aluminum alloy fabricated by wire arc additive manufacturing

  • 摘要: 以不同钇含量的2319铝合金丝材为原材料,采用基于冷金属过渡的电弧增材制造工艺(wire arc addictive manufacturing,WAAM)制备2319铝合金,研究了钇含量对WAAM 2139铝合金的显微组织及力学性能的影响. 结果表明,添加Y元素可明显细化直接沉积态WAAM 2319铝合金的晶粒,细晶强化及第二相强化作用显著,间接影响了时效过程析出的二次析出相θ′的数量,同时,未对直接沉积态WAAM 2319铝合金中气孔缺陷的大小、分布产生显著影响. 随着钇含量的增加,合金凝固过程含钇化合物在晶粒交汇处偏析程度增大,使得合金成分过冷度减小,导致WAAM 2319铝合金的晶粒尺寸呈现先减小后增大的趋势,抗拉强度和屈服强度呈现出先上升后下降趋势,断后伸长率逐渐下降. 当钇含量为0.15%时,WAAM 2319铝合金表现出最优的力学性能,即抗拉强度484 MPa、屈服强度348 MPa和断后伸长率10.5%.
    Abstract: The wire arc additive manufacturing technology (WAAM) based on cold metal transfer was used to prepare WAAM 2319 aluminum alloys by 2319 aluminum alloy wires with different yttrium (Y) content, and the effect of Y content on the microstructure and mechanical properties of WAAM 2139 alloy were investigated. The results show that the grain of as-deposited WAAM 2319 aluminum alloy is obviously refined after adding Y, which has the effects of fine grain strengthening and second phase strengthening, which affected the formation amount of the secondary precipitates θ' in the aging process indirectly. Meanwhile, the size and distribution of pore defects in WAAM 2319 aluminum alloy are not significantly affected with the addition of Y. With the increase of Y content, the degree of segregation of Y-containing compounds at the grain intersection during the solidification process of the alloy increases, which reduces the component undercooling, and resulting in the grain size of WAAM 2319 aluminum alloy decreases and then increases, the tensile strength and yield strength increase and then decrease, and the elongation decreases gradually. When the Y content reaches 0.15%, WAAM 2319 aluminum alloy reaches the optimal value of mechanical properties with tensile strength of 484 MPa, yield strength of 348 MPa and elongation of 10.5%.
  • 图  1   WAAM 成形过程示意图

    Figure  1.   Schematic diagram of the WAAM process

    图  2   不同钇含量WAAM 2319铝合金气孔缺陷

    Figure  2.   Porosity defects of WAAM 2319 aluminum alloy with different Y content. (a) Y00 alloy; (b) Y05 alloy; (c) Y10 alloy; (d) Y15 alloy; (e) Y20 alloy; (f) Y25 alloy

    图  3   不同钇含量WAAM 2319铝合金的直接沉积态显微组织

    Figure  3.   Microstructure of as-deposited WAAM 2319 aluminum alloy with different Y content. (a) Y00 alloy; (b) Y05 alloy; (c) Y10 alloy; (d) Y15 alloy; (e) Y20 alloy; (f) Y25 alloy

    图  4   不同钇含量WAAM 2319铝合金的晶粒尺寸分布情况

    Figure  4.   Grain size distribution of WAAM 2319 aluminum alloy with different Y content

    图  5   不同钇含量WAAM 2319铝合金直接沉积态SEM图

    Figure  5.   SEM of as-deposited WAAM 2319 aluminum alloy with different Y content. (a) Y00 alloy; (b) Y05 alloy; (c) Y10 alloy; (d) Y15 alloy; (e) Y20 alloy; (f) Y25 alloy

    图  6   含钇的WAAM 2319铝合金析出相EDS分析结果

    Figure  6.   EDS analysis results of precipitated phase of WAAM 2319 aluminum alloy containing Y. (a) intragranular Al2Cu phase; (b) Al2Cu phase at grain boundary; (c) Al6Cu6Y phase at grain boundary

    图  7   不同钇含量WAAM 2319铝合金T6态显微组织

    Figure  7.   Microstructure of WAAM 2319 aluminum alloy with different Y content after T6 heat treatment. (a) Y00 alloy; (b) Y05 alloy; (c) Y10 alloy; (d) Y15 alloy; (e) Y20 alloy; (f) Y25 alloy

    图  8   不同钇含量WAAM 2319铝合金的析出相形貌

    Figure  8.   Precipitated phase morphology of WAAM 2319 aluminum alloy with different Y content. (a) Y00 alloy; (b) Y05 alloy; (c) Y10 alloy; (d) Y15 alloy; (e) Y20 alloy; (f) Y25 alloy

    图  9   不同钇含量WAAM 2319铝合金的力学性能

    Figure  9.   Mechanical properties of WAAM 2319 aluminum alloy with different Y content

    图  10   不同钇含量WAAM 2319铝合金的断口形貌

    Figure  10.   Fracture morphology of WAAM 2319 aluminum alloy with different Y content. (a) Y00 alloy; (b) Y05 alloy; (c) Y10 alloy; (d) Y15 alloy; (e) Y20 alloy; (f) Y25 alloy

    表  1   不同钇含量的2319铝合金丝材的化学成分(质量分数,%)

    Table  1   Chemical compositions of 2319 aluminum alloy wire with different Y content

    材料SiFeCuMnTiZrVYAl
    Y000.018 60.065 46.620.2620.1520.1260.096 90.001余量
    Y050.018 40.064 56.740.2810.1320.1300.087 40.047余量
    Y100.018 10.063 66.780.2840.1390.1440.083 20.098余量
    Y150.019 30.064 16.720.2840.1240.1200.080 90.149余量
    Y200.020 20.061 06.790.2820.1320.1280.088 60.196余量
    Y250.024 50.063 06.580.2680.1130.1130.069 70.243余量
    下载: 导出CSV

    表  2   WAAM 成形过程工艺参数

    Table  2   Process parameters of WAAM process

    焊接电流I/A电弧电压U/V送丝速度vs/(m·min−1)焊炬移动速度V/(mm·s−1)保护气体流量Q/(L·min−1)层间冷却时间t/s
    9811.26.582560
    下载: 导出CSV

    表  3   析出相的EDS分析结果

    Table  3   EDS analysis results of precipitated phase

    位置元素质量分数w(%)原子分数a(%)
    晶粒内Al2Cu相Al71.6685.62
    Cu28.3414.38
    晶界处Al2Cu相Al71.8585.74
    Cu28.1514.26
    晶界处Al6Cu6Y相Al57.8477.37
    Cu34.0019.32
    Y8.163.31
    下载: 导出CSV
  • [1]

    Stewart S W, Martina F, Addison A C, et al. Wire + arc additive manufacturing[J]. Materials Science and Technology, 2016, 32(7): 641 − 647. doi: 10.1179/1743284715Y.0000000073

    [2] 夏玉峰, 张雪, 廖海龙, 等. 电弧熔丝增材制造钛/铝复合材料的组织与性能[J]. 焊接学报, 2021, 42(8): 18 − 24. doi: 10.12073/j.hjxb.20210422001

    Xia Yufeng, Zhang Xue, Liao Hailong, et al. Microstructure and properties of titanium/aluminum composites fabricated by wire arc additive manufacturing[J]. Transactions of The China Welding Institution, 2021, 42(8): 18 − 24. doi: 10.12073/j.hjxb.20210422001

    [3]

    Zhao Pengkang, Fang Kui, Tang Cheng, et al. Effect of interlayer cooling time on the temperature field of 5356-TIG wire arc additive manufacturing[J]. China Welding, 2021, 30(2): 17 − 24.

    [4] 张帅锋, 吕逸帆, 魏正英, 等. 基于CMT的电弧熔丝增材Ti-6Al-3Nb-2Zr-1Mo合金的组织与性能[J]. 焊接学报, 2021, 42(2): 56 − 62. doi: 10.12073/j.hjxb.20200804003

    Zhang Shuaifeng, Lü Yifan, Wei Zhengying, et al. Microstructures and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy fabricated by CMT-wire arc additive manufacturing[J]. Transactions of The China Welding Institution, 2021, 42(2): 56 − 62. doi: 10.12073/j.hjxb.20200804003

    [5]

    Gu Jianglong, Gao Minjie, Yang Shouliang, et al. Pore formation and evolution in wire  +  arc additively manufactured 2319 Al alloy[J]. Additive Manufacturing, 2019, 30: 100900. doi: 10.1016/j.addma.2019.100900

    [6]

    Li Y, Yu S, Chen Y, et al. Wire and arc additive manufacturing of aluminum alloy lattice structure[J]. Journal of Manufacturing Processes, 2020, 50: 510 − 519. doi: 10.1016/j.jmapro.2019.12.049

    [7]

    Fang X, Zhang L, Chen G, et al. Microstructure evolution of wire-arc additively manufactured 2319 aluminum alloy with interlayer hammering[J]. Materials Science and Engineering A, 2020, 800: 140 − 168.

    [8] 柏久阳. 2219铝合金GTA增材制造及其热处理过程的组织演变[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    Bai Jiuyang. Microstructure evolution of 2219-Al during GTA based additive manufacturing and heat treatment[D]. Harbin: Harbin Institute of Technology, 2017.

    [9] 顾江龙. CMT 工艺增材制造Al-Cu-(Mg)合金的组织与性能的研究[D]. 沈阳: 东北大学, 2016.

    Gu Jianglong. Study on microstructure and mechanical properties of additively manufactured Al-Cu-(Mg) alloys with the CMT process[D]. Shenyang: Northeastern University, 2016.

    [10] 从保强, 孙红叶, 彭鹏, 等. Al-6.3Cu AC-GTAW电弧增材成形的气孔控制[J]. 稀有金属材料与工程, 2017, 47(5): 1359 − 1364.

    Cong Baoqiang, Sun Hongye, Peng Peng, et al. Porosity control of wire + arc additively manufactured Al-6.3Cu alloy deposition using AC-GTAW process[J]. Rare Metal Materials and Engineering, 2017, 47(5): 1359 − 1364.

    [11] 郝轩. CMT电弧增材制造2319铝合金组织及力学性能调控[D]. 南昌: 南昌航空大学, 2020.

    Hao Xuan. Control of microstructure and mechanical properties of 2319 aluminum alloy manufactured by CMT wire arc additive manufacturing[D]. Nanchang: Nanchang Hangkong University, 2020.

    [12]

    Gu J, Ding J, Williams S W, et al. The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al-6.3Cu alloy[J]. Materials Science and Engineering A, 2016, 651: 18 − 26. doi: 10.1016/j.msea.2015.10.101

    [13]

    Zhang Z, Ma Z, He S, et al. Effect of laser power on the microstructure and mechanical properties of 2319-Al fabricated by wire-based additive manufacturing[J]. Journal of Materials Engineering and Performance, 2021, 30(1): 6640 − 6649.

    [14]

    Zhou Yinghui, Lin Xin, Kang Nan, et al. Influence of travel speed on microstructure and mechanical properties of wire + arc additively manufactured 2219 aluminum alloy[J]. Journal of Materials Science & Technology, 2020, 37(2): 143 − 153.

    [15]

    Wang S, Gu H, Wang W, et al. Study on microstructural and mechanical properties of an Al-Cu-Sn alloy wall deposited by double-wire arc additive manufacturing process[J]. Materials, 2020, 13(1): 73 − 82.

    [16] 姜宏伟, 张树玲, 陈炜晔, 等. 稀土亿对再生ADC12铝合金组织与抗拉强度的影响[J]. 热加工工艺, 2018, 47(15): 79 − 82,86.

    Jiang Hongwei, Zhang Shuling, Chen Weiye, et al. Effect of rare earth yttriun on microstructure and compressive strength of regenerated ADC12 aluminum alloy[J]. Hot Working Technology, 2018, 47(15): 79 − 82,86.

    [17]

    Xu S P, Shi C S, Zhao N Q, et al. Microstructure and tensile properties of A356 alloy with different Sc/Zr additions[J]. Rare Metals, 2021, 40(9): 2514 − 2522. doi: 10.1007/s12598-020-01529-8

    [18]

    Tao Chengchang, Huang Hongjun, Yuan Xiaoguang, et al. Effect of Y element on microstructure and hot tearing sensitivity of as-cast Al-4.4Cu-1.5Mg-0.15Zr alloy[J]. International Journal of Metalcasting, 2022, 16: 1010 − 1019. doi: 10.1007/s40962-021-00666-9

    [19]

    Zhang Xingguo, Mei Feiqiang, Zhang Huanyue, et al. Effects of Gd and Y additions on microstructure and properties of Al-Zn-Mg-Cu-Zr alloy[J]. Materials Science & Engineering A, 2012, 552: 230 − 235.

    [20]

    Pozdniakov A V, Barkov R Y. Microstructure and materials characterisation of the novel Al-Cu-Y alloy[J]. Materials Science & Technology, 2018, 34(12): 1489 − 1496.

    [21]

    Min L, Cai L, Liu P. The effect of Y on microstructure and properties of Al-5wt.%Cu based alloy[J]. Key Engineering Materials, 2012, 522: 227 − 230. doi: 10.4028/www.scientific.net/KEM.522.227

    [22]

    Zhang L, Masset P J, Tao X, et al. Thermodynamic description of the Al-Cu-Y ternary system[J]. CALPHAD-Computer Coupling of Phase Diagrams and Thermochemistry, 2011, 25(4): 574 − 579.

    [23]

    Wang B, Yi Y, He H, et al. Effects of deformation temperature on second-phase particles and mechanical properties of multidirectionally-forged 2A14 aluminum alloy[J]. Journal of Alloys and Compounds, 2021, 871: 159459. doi: 10.1016/j.jallcom.2021.159459

图(10)  /  表(3)
计量
  • 文章访问数:  386
  • HTML全文浏览量:  70
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-15
  • 网络出版日期:  2022-07-28
  • 刊出日期:  2022-07-24

目录

    /

    返回文章
    返回