Research progress of welding and joining by using the high entropy alloys as filler metals
-
摘要: 高熵合金是近年来快速发展的一种新型合金,其成分设计突破了传统合金的设计理念,是合金理论发展的一个新方向.高熵合金所具有的高熵效应、晶格畸变效应、缓慢扩散效应和鸡尾酒效应在焊接领域表现出独特的应用价值,前景十分广阔.文中总结了国内外利用高熵合金四大效应开发焊接材料与工艺的研究现状和存在的问题,并对未来发展方向进行了展望.Abstract: High entropy alloys (HEAs) are new generation of alloys which have been developed rapidly in recent years. The composition design of HEAs is a breakthrough of the traditional alloy design idea, and it is a new developing direction of alloy theories. With the high entropy effect, severe lattice distortion effect, sluggish diffusion effect and cocktail effect, the HEAs have promising applications in welding fields. This paper summarized the research status and existing problems in developing the welding filler materials and welding processes utilizing the four effects of HEAs, and the trend of development is prospected as well.
-
-
-
[1] Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299 − 303. doi: 10.1002/adem.200300567
[2] Beke D L, Erdelyi G. On the diffusion in high-entropy alloys[J]. Materials Letters, 2016, 164: 111 − 113. doi: 10.1016/j.matlet.2015.09.028
[3] Chen J, Zhou X, Wang W, et al. A review on fundamental of high entropy alloys with promising high-temperature properties[J]. Journal of Alloys and Compounds, 2018, 760: 15 − 30. doi: 10.1016/j.jallcom.2018.05.067
[4] Paul T R, Belovai V, Murch G E. Analysis of diffusion in high entropy alloys[J]. Materials Chemistry and Physics, 2018, 210: 301 − 308. doi: 10.1016/j.matchemphys.2017.06.039
[5] Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts[J]. Acta Materialia, 2017, 122: 448 − 511. doi: 10.1016/j.actamat.2016.08.081
[6] 张义福, 张华, 苏展展, 等. 钛/钢激光焊接头中脆性化合物调控研究进展[J]. 兵器材料科学与工程, 2019, 29(6): 122 − 129. Zhang Yifu, Zhang Hua, Su Zhanzhan, et al. Research progress on the regulation of brittle compounds in titanium alloy/steel dissimilar metal joint by laser welding[J]. Ordnance Material Science and Engineering, 2019, 29(6): 122 − 129.
[7] 祝要民, 李青哲, 邱然锋, 等. 钛/钢异种金属焊接的研究现状[J]. 电焊机, 2016, 46(11): 78 − 82. Zhu Yaomin, Li Qingzhe, Qiu Ranfeng, et al. Researching status of dissimilar metal welding of titanium and steel[J]. Electric Welding Machine, 2016, 46(11): 78 − 82.
[8] 吕攀, 王克鸿, 朱和国. 钛合金与不锈钢异种金属焊接的研究现状[J]. 热加工工艺, 2017, 46(13): 26 − 32. Lü Pan, Wang Kehong, Zhu Heguo. Research status of titanium alloy and stainless steel dissimilar metal welding[J]. Hot Working Technology, 2017, 46(13): 26 − 32.
[9] Kunce I, Polanski M, Karczewski K, et al. Microstructural characterisation of high-entropy alloy AlCoCrFeNi fabricated by laser engineered net shaping[J]. Journal of Alloys and Compounds, 2015, 648: 751 − 758. doi: 10.1016/j.jallcom.2015.05.144
[10] Choi M, Ondicho I, Park N, et al. Strength–ductility balance in an ultrafine-grained non-equiatomic Fe50(CoCrMnNi)50 medium-entropy alloy with a fully recrystallized microstructure[J]. Journal of Alloys and Compounds, 2019, 780: 959 − 966. doi: 10.1016/j.jallcom.2018.11.265
[11] Xu Y, Bu Y, Liu J, et al. In-situ high throughput synthesis of high-entropy alloys[J]. Scripta Materialia, 2019, 160: 44 − 47. doi: 10.1016/j.scriptamat.2018.09.040
[12] Tong Y, Chen D, Han B, et al. Outstanding tensile properties of a precipitation-strengthened FeCoNiCrTi0.2 high-entropy alloy at room and cryogenic temperatures[J]. Acta Materialia, 2019, 165: 228 − 240. doi: 10.1016/j.actamat.2018.11.049
[13] Srikanth V, Laik A, Dey G K. Joining of stainless steel 304L with Zircaloy-4 by diffusion bonding technique using Ni and Ti interlayers[J]. Materials and Design, 2017, 126(4): 141 − 154.
[14] Jafarian M, Khodabandeh A, Manafi S. Evaluation of diffusion welding of 6061 aluminum and AZ31 magnesium alloys without using an interlayer[J]. Materials and Design, 2015, 65: 160 − 164. doi: 10.1016/j.matdes.2014.09.020
[15] Kundu S, Mishra B, Olson D L, et al. Interfacial reactions and strength properties of diffusion bonded joints of Ti64 alloy and 17-4PH stainless steel using nickel alloy interlayer[J]. Materials and Design, 2013, 51: 714 − 722. doi: 10.1016/j.matdes.2013.04.088
[16] 陈凯, 翟秋亚, 田健, 等. 基于高熵合金中间层的TA2与Q235电阻焊研究[J]. 现代焊接, 2013, 8(41): 36 − 38. Chen Kai, Zhai Qiuya, Tian Jian, et al. The resistance welding of TA2 and Q235 base on high entorpy Interlayer alloys[J]. Modern Welding Technology, 2013, 8(41): 36 − 38.
[17] 徐锦锋, 郭嘉宝, 田健, 等. 基于焊缝金属高熵化的钛/钢焊材设计与制备[J]. 铸造技术, 2014, 35(11): 2674 − 2676. Xu Jinfeng, Guo Jiabao, Tian Jian, et al. Design and preparation of welding materials applied to welding titanium and steel based on weldmetal high entropy converting[J]. Foundry Technology, 2014, 35(11): 2674 − 2676.
[18] 杨全虎, 翟秋亚, 徐锦锋, 等. Ta1与0Cr18Ni9薄板的储能焊试验[J]. 焊接学报, 2019, 40(9): 116 − 121. Yang Quanhu, Zhai Qiuya, Xu Jinfeng, et al. Energy storage welding test of Ta1 and 0Cr18Ni9 thin plates[J]. Transactions of the China Welding Institution, 2019, 40(9): 116 − 121.
[19] Azhari-Saray H, Sarkari-Khorrami M, Nademi-Babahadi A, et al. Dissimilar resistance spot welding of 6061-T6 aluminum alloy/St-12 carbon steel using a high entropy alloy interlayer[J]. Intermetallics, 2020, 124(3): 106876.
[20] 刘玉林, 罗永春, 石彦彦. 高熵合金CoCrFeMnNi/不锈钢真空扩散焊[J]. 电焊机, 2016, 46(12): 122 − 127. Liu Yulin, Luo Yongchun, Shi Yanyan. Vacuum diffusion welding between CoCrFeMnNi high entropy and stainless steel[J]. Electric Welding Machine, 2016, 46(12): 122 − 127.
[21] 李红, 韩祎, 曹健, 等. 高熵合金在钎焊和表面工程领域的应用研究进展[J]. 材料工程, 2021, 49(8): 1 − 10. doi: 10.11868/j.issn.1001-4381.2020.000950 Li Hong, Han Yi, Cao Jian, et al. Research progress in high-entropy alloys used in brazing and surface engineering fields[J]. Journal of Materials Engineering, 2021, 49(8): 1 − 10. doi: 10.11868/j.issn.1001-4381.2020.000950
[22] Zhang L X, Shi J M, Li H W, et al. Interfacial microstructure and mechanical properties of ZrB2-SiC-C ceramic and GH99 superalloy joints brazed with a Ti-modified FeCoNiCrCu high-entropy alloy[J]. Materials & Design, 2016, 97: 230 − 238. doi: 10.1016/j.matdes.2016.02.055
[23] Wang G, Yang Y, He R, et al. A novel high entropy CoFeCrNiCu alloy filler to braze SiC ceramics[J]. Journal of the European Ceramic Society, 2020, 40(9): 3391 − 3398. doi: 10.1016/j.jeurceramsoc.2020.03.044
[24] Yang Y, Wang G, He R, et al. Microstructure and mechanical properties of ZrB2-SiC/Nb joints brazed with CoFeNiCrCuTix high-entropy alloy filler[J]. Journal of the American Ceramic Society, 2021, 104(7): 2992 − 3003. doi: 10.1111/jace.17732
[25] 王秒, 王微, 杨云龙, 等. 钎焊时间对 CoFeNiCrCu 高熵钎料钎焊SiC陶瓷接头组织与性能影响[J]. 航空学报, 2021, 42: 1 − 9. Wang Miao, Wang Wei, Yang Yunlong, et al. Effect of brazing time on microstructure and properties of SiC ceramic joint brazed with cofenicrcu high entropy solder[J]. Journal of Aeronautics, 2021, 42: 1 − 9.
[26] Tillmann W, Ulitzka T, Wojarski L, et al. Development of high entropy alloys for brazing applications[J]. Welding in the World, 2020, 64(1): 201 − 208. doi: 10.1007/s40194-019-00824-y
[27] Kokabi D, Kaflou A. TiAl/IN718 dissimilar brazing with TiZrNiCuCo high-entropy filler metal: phase characterization and fractography[J]. Welding in the World, 2021, 65(6): 1189 − 1198. doi: 10.1007/s40194-021-01075-6
[28] Pang S, Sun L, Xiong H, et al. A multicomponent TiZr-based amorphous brazing filler metal for high-strength joining of titanium alloy[J]. Scripta Materialia, 2016, 117: 55 − 59. doi: 10.1016/j.scriptamat.2016.02.006
[29] Dong K W, Kong J, Yang Y, et al. Vacuum brazing of TiAl-based alloy and GH536 superalloy with a low-melting point amorphous Ti35Zr25Be30Co10 filler[J]. Journal of Manufacturing Processes, 2019, 47(5): 410 − 418.
[30] Gao M, Schneiderman B, Gilbert S M, et al. Microstructural evolution and mechanical properties of nickel-base superalloy brazed joints using a MPCA filler[J]. Metallurgical and Materials Transactions A, 2019, 50(11): 5117 − 5127. doi: 10.1007/s11661-019-05386-8
[31] Tillmann W, Wojarski L, Stangier D, et al. Application of the eutectic high entropy alloy Nb0.73CoCrFeNi2.1 for high temperature joints[J]. Welding in the World, 2020, 64(9): 1597 − 1604. doi: 10.1007/s40194-020-00944-w
[32] Liu D, Wang J, Xu M, et al. Evaluation of dissimilar metal joining of aluminum alloy to stainless steel using the filler metals with a high-entropy design[J]. Journal of Manufacturing Processes, 2020, 58(7): 500 − 509.
[33] Hao X, Dong H, Xia Y, et al. Microstructure and mechanical properties of laser welded TC4 titanium alloy/304 stainless steel joint with (CoCrFeNi)100- xCu x high-entropy alloy interlayer[J]. Journal of Alloys and Compounds, 2019, 803: 649 − 657. doi: 10.1016/j.jallcom.2019.06.225
[34] 侯光远. 基于焊缝金属高熵化的钛/钢TIG焊研究[D]. 西安: 西安理工大学, 2015. Hou Guangyuan. Reserch on gtaw of titanium and steel based on the weld metal high-entroy[D]. Xi′an: Xi′an University of Technology, 2015.
[35] 樊丁, 康玉桃, 黄健康, 等. 铝/钢预置高熵合金粉末对接接头组织及力学性能[J]. 兰州理工大学学报, 2019, 45(6): 1 − 5. doi: 10.3969/j.issn.1673-5196.2019.06.001 Fan Ding, Kang Yutao, Huang Jiankang, et al. Microstructure and mechanical performance of butt joint of aluminum and steel welded with preset high-entropy alloy powder[J]. Journal of Lanzhou University of Technology, 2019, 45(6): 1 − 5. doi: 10.3969/j.issn.1673-5196.2019.06.001
[36] 鲁一荻, 张骁勇, 彭志刚. 合金元素对激光熔覆高熵合金涂层影响的研究进展[J]. 焊接, 2021(10): 8 − 14. Lu Yidi, Zhang Xiaoyong, Peng Zhigang. Research progress on the effect of alloying elements on laser cladding high entropy alloy coating[J]. Welding & Joining, 2021(10): 8 − 14.
[37] Guo Wei, Cai Yan. Effect of laser remelting on microstructure and mechanical properties of CrMnFeCoNi high entropy alloy[J]. China Welding, 2021, 30(2): 1 − 10.
[38] Kenel C, Casati N P M, Dunand D C, et al. 3D ink-extrusion additive manufacturing of CoCrFeNi high-entropy alloy micro-lattices.[J]. Nature Communications, 2019, 10(1): 1 − 8. doi: 10.1038/s41467-019-08763-4
[39] 杨东青, 王小伟, 黄勇, 等. 熔化极电弧增材制造 18Ni 马氏体钢组织和性能[J]. 焊接学报, 2020, 41(8): 6 − 9. doi: 10.12073/j.hjxb.20200608002 Yang Dongqing, Wang Xiaowei, Huang Yong, et al. Microstructure and mechanical properties of 18Ni maraging steel deposited by gas metal arc additive manufacturing[J]. Transactions of the China Welding Institution, 2020, 41(8): 6 − 9. doi: 10.12073/j.hjxb.20200608002
[40] 高绪杰, 郭娜娜, 朱光明, 等. 激光熔覆制备高熵合金涂层的研究进展[J]. 表面技术, 2019, 48(6): 107 − 117. Gao Xujie, Guo Nana, Zhu Guangming, et al. Research progress of high entropy alloy coating prepared by laser cladding[J]. Surface Technology, 2019, 48(6): 107 − 117.
[41] Han Z D, Luan H W, Liu X, et al. Microstructures and mechanical properties of TixNbMoTaW refractory high-entropy alloys-science direct[J]. Materials Science and Engineering:A, 2018, 712: 380 − 385. doi: 10.1016/j.msea.2017.12.004
[42] 王磊磊, 刘婷, 段舒尧, 等. 元素分布对FeCoCrNi高熵合金涂层微观组织的影响[J]. 焊接学报, 2021, 42(11): 57 − 64. Wang Leilei, Liu Ting, Duan Shuyao, et al. Effect of element distribution on microstructure of fecocrni high entropy alloy coating[J]. Transactions of the China Welding Institution, 2021, 42(11): 57 − 64.
[43] Wang H W, Xie J L, Chen Y H, et al. Effect of CoCrFeNiMn high entropy alloy interlayer on microstructure and mechanical properties of laser-welded NiTi/304SS joint[J]. Journal of Materials Research and Technology, 2022, 18: 1028 − 1037. doi: 10.1016/j.jmrt.2022.03.022
[44] 黄留飞, 孙耀宁, 季亚奇, 等. 激光熔化沉积 AlCoCrFeNi2.5 高熵合金的组织与力学性能研究[J]. 中国激光, 2021, 48(6): 103 − 110. Huang Liufei, Sun Yaoning, Ji Yaqi, et al. Investigation of microstructure and mechanical properties of laser-melting-deposited AlCoCrFeNi2.5 high entroy alloy[J]. Chinese Journal of Lasers, 2021, 48(6): 103 − 110.
[45] 石杰. 3D 打印高熵合金—铁基非晶合金复合材[D]. 武汉: 华中科技大学, 2019. Shi Jie. Processing high entropy alloy-Fe-based amorphous alloy composites by 3D-printing[D]. Wuhan: Huazhong University of Science and Technology, 2019.
[46] Wu Z, David S A, Leonard D N, et al. Microstructures and mechanical properties of a welded CoCrFeMnNi high-entropy alloy[J]. Science and Technology of Welding and Joining, 2018, 23(7): 585 − 595. doi: 10.1080/13621718.2018.1430114
[47] Wu S W, Wang G, Jia Y D, et al. Enhancement of strength-ductility trade-off in a high-entropy alloy through a heterogeneous structure[J]. Acta Materialia, 2019, 165: 444 − 458. doi: 10.1016/j.actamat.2018.12.012
[48] Kim J H, Lim K R, Won J W, et al. Mechanical properties and deformation twinning behavior of as-cast CoCrFeMnNi high-entropy alloy at low and high temperatures[J]. Materials Science and Engineering A, 2018, 712: 108 − 113. doi: 10.1016/j.msea.2017.11.081
[49] Bridges D, Zhang S, Lang S, et al. Laser brazing of a nickel-based superalloy using a Ni-Mn-Fe-Co-Cu high entropy alloy filler metal[J]. Materials Letters, 2018, 215: 11 − 14.
[50] Dabrowa J, Zajusz M, Kucza W, et al. Demystifying the sluggish diffusion effect in high entropy alloys[J]. Journal of Alloys and Compounds, 2019, 783: 193 − 207. doi: 10.1016/j.jallcom.2018.12.300
[51] Kottke J, Laurent-Brocq M, Fareed A, et al. Tracer diffusion in the Ni–CoCrFeMn system: Transition from a dilute solid solution to a high entropy alloy[J]. Scripta Materialia, 2019, 159: 94 − 98. doi: 10.1016/j.scriptamat.2018.09.011
[52] Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys[J]. Acta Materialia, 2013, 61(13): 4887 − 4897. doi: 10.1016/j.actamat.2013.04.058
[53] 丁文, 王小京, 刘宁, 等. CoCrFeMnNi高熵合金作为中间层的Cu/304不锈钢扩散连接研究[J]. 金属学报, 2020, 56(8): 1084 − 1090. Ding Wen, Wang Xiaojing, Liu Ning, et al. Diffusion bonding of copper and 304 stainless steel with an interlayer of CoCrFeMnNi high-entropy alloy[J]. Acta Metallurgica Sinica, 2020, 56(8): 1084 − 1090.
[54] Ding W, Liu N, Fan J, et al. Diffusion bonding of copper to titanium using CoCrFeMnNi high-entropy alloy interlayer[J]. Intermetallics, 2021, 129: 107027. doi: 10.1016/j.intermet.2020.107027
[55] Sabetghadam H, HanzakiI A Z, Araee A. Diffusion bonding of 410 stainless steel to copper using a nickel interlayer[J]. Materials Characterization, 2010, 61(6): 626 − 634. doi: 10.1016/j.matchar.2010.03.006
[56] 刘玉林. 高熵合金与铝、铜及不锈钢异种材料扩散焊研究[D]. 兰州: 兰州理工大学, 2016. Liu Yulin. The study of diffusion welding of high entropy alloy with aluminum, copper and stainless steel[D]. Lanzhou : Lanzhou University of Technology , 2016.
[57] Shen Y A, Chen S W, Chen H Z, et al. Extremely thin interlayer of multi-element intermetallic compound between Sn-based solders and FeCoNiMn high-entropy alloy[J]. Applied Surface Science, 2021, 558(100): 149945.
[58] Peng J, Wang M, Sadeghi B, et al. Increasing shear strength of Au-Sn bonded joint through nano-grained interfacial reaction products[J]. Journal of Materials Science, Springer US, 2021, 56(11): 7050 − 7062. doi: 10.1007/s10853-020-05623-1
[59] Peng J, Liu H, Fu L, et al. Multi-principal-element products enhancing Au-Sn-bonded joints[J]. Journal of Alloys and Compounds, 2021, 852: 157015. doi: 10.1016/j.jallcom.2020.157015
[60] Tsai M H, Yeh J W, Gan J Y. Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon[J]. Thin Solid Films, 2008, 516(16): 5527 − 5530. doi: 10.1016/j.tsf.2007.07.109
[61] Qiu X W, Zhang Y P, Liu C G. Effect of Ti content on structure and properties of Al2CrFeNiCoCuTix high-entropy alloy coatings[J]. Journal of Alloys and Compounds, 2014, 585: 282 − 286. doi: 10.1016/j.jallcom.2013.09.083
[62] Qiu X. Microstructure, hardness and corrosion resistance of Al2CoCrCuFeNiTix high-entropy alloy coatings prepared by rapid solidification[J]. Journal of Alloys and Compounds, 2018, 735: 359 − 364. doi: 10.1016/j.jallcom.2017.11.158
[63] Shang C, Axinte E, Sun J, et al. CoCrFeNi(W1− xMo x) high-entropy alloy coatings with excellent mechanical properties and corrosion resistance prepared by mechanical alloying and hot pressing sintering[J]. Materials & Design, 2017, 117: 193 − 202. doi: 10.1016/j.matdes.2016.12.076
[64] Shu F, Yang B, Dong S, et al. Effects of Fe-to-Co ratio on microstructure and mechanical properties of laser cladded FeCoCrBNiSi high-entropy alloy coatings[J]. Applied Surface Science, 2018, 450: 538 − 544. doi: 10.1016/j.apsusc.2018.03.128
[65] Jiang Y Q, Li J, Juan Y F, et al. Evolution in AlCoCrxFeNi high-entropy alloy coatings fabricated by laser cladding[J]. Journal of Alloys and Compounds, 2019, 775: 1 − 14. doi: 10.1016/j.jallcom.2018.10.091
[66] Seol J B, Bae J W, LI Z, et al. Boron doped ultrastrong and ductile high-entropy alloys[J]. Acta Materialia, 2018, 151: 366 − 376. doi: 10.1016/j.actamat.2018.04.004
[67] Kao Y F, Chen T J, Chen S K, et al. Microstructure and mechanical property of as-cast, -homogenized, and -deformed Al xCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys[J]. Journal of Alloys and Compounds, 2009, 488(1): 57 − 64.
[68] Liu D, Guo R, Hu Y, et al. Effects of the elemental composition of high-entropy filler metals on the mechanical properties of dissimilar metal joints between stainless steel and low carbon steel[J]. Journal of Materials Research and Technology, 2020, 9(5): 11453 − 11463. doi: 10.1016/j.jmrt.2020.08.028
[69] Liu D, Guo R, Hu Y, et al. Dissimilar metal joining of 304 stainless steel to SMA490BW steel using the filler metal powders with a high-entropy design[J]. Metals and Materials International, 2020, 26(6): 854 − 866. doi: 10.1007/s12540-019-00400-5
[70] Liu D, Wang W, Zha X, et al. Effects of groove on the microstructure and mechanical properties of dissimilar steel welded joints by using high-entropy filler metals[J]. Journal of Materials Research and Technology, 2021, 13(4): 173 − 183.