Research progress of high-entropy amorphous materials and their additive manufacturing technology
-
摘要: 高熵非晶合金具有独特的物理、化学和力学性能以及更好的热稳定性,因而其制备技术成为国内外重要的研究热点之一. 然而利用传统技术制备高熵非晶材料时会产生晶粒粗大及材料浪费等缺点,难以满足工艺生产需要. 而增材制造技术的精准制造和快速冷却等特点可以解决这一问题,制备出各项性能优越的高熵非晶合金. 简要介绍了高熵非晶材料的研究体系和常用制造方法,着重阐述了高熵非晶材料的断裂强度、耐腐蚀性和热稳定性的研究,对增材制造技术的工艺特征和优势,以及利用增材制造技术制备高熵非晶合金的科学难点作出了总结. 结果表明,利用增材制造技术有利于获得致密均匀的高熵非晶材料,但对于非晶相形成的解释仅限于高熵合金4大效应.最后阐述了近年来利用常用的两种增材制造手段制造高熵非晶合金的研究,并对增材制造技术制备高熵非晶材料的发展趋势提出了展望.Abstract: High-entropy amorphous alloys (HEAAs) exhibit unique physical, chemical and mechanical properties as well as better thermal stability. Thus, its fabrication technology has become one of the important research hotspots at home and abroad. However, high-entropy amorphous materials manufactured by traditional technology had defects such as coarse crystal grains and material waste, which was difficult to meet the needs of processing production. The precise manufacturing and rapid cooling of additive manufacturing technology could solve the problems, and produce high entropy amorphous alloys with superior properties. This review research briefly introduced the research system and common preparation methods of high-entropy amorphous materials. It mainly focused on the research about fracture strength, corrosion resistance and thermal stability of high-entropy amorphous materials. The process features and advantages of additive manufacturing technology, and the scientific difficulties for applying this technology to fabricate high-entropy amorphous alloys were summarized. The results showed that additive manufacturing technology contributed to high-entropy amorphous materials with dense and uniform microstructures, while the explanation for the formation of amorphous phases was limited to the four effects of high-entropy alloys, Finally, a discussion with two additive manufacturing methods commonly used in the fabrication of high-entropy amorphous materials in recent years was made. Furthermore, the prospects for the development trend of fabricating high-entropy amorphous materials by additive manufacturing technology were put forward.
-
Keywords:
- high-entropy alloy /
- amorphous phase /
- additive manufacturing /
- grain refinement
-
0. 序言
2219铝合金作为重要的轻量化结构材料广泛应用于运载火箭贮箱等关键构件. 焊接是铝合金航空航天构件成形制造的必要工序,焊缝质量直接关系到铝合金构件的服役可靠性. 变极性钨极氩弧焊(variable polarity tungsten inert gas welding, VPTIG)因其工艺适应性好等优点,目前是2219铝合金焊接生产的主流工艺. 随着焊接电源技术的不断发展,有研究人员在常规VPTIG基础上引入高频(≥20 kHz)脉冲电流,创新性地提出了双频复合脉冲变极性氩弧焊接工艺(double-pulsed variable polarity tungsten inert gas welding, DP-VPTIG)[1]. 研究表明,20 kHz以上高频脉冲电流的引入可增强电弧力和挺度,增大焊缝熔深、增强熔池流动,促进焊缝组织细化,加速熔池气体逸出,进一步提升接头性能[2-3].
尽管VPTIG工艺已获得显著进步,但2219铝合金熔化焊接头强度系数和断后伸长率仍普遍较低,对接头进行强塑化处理具有重要的工程应用价值. 焊后热处理是调控接头显微组织和力学性能的重要手段. 目前针对2219铝合金电弧焊接头热处理优化的研究报道相对较少. 由于含有约6%Cu元素,2219铝合金可通过不同的时效处理在Al基体中引入多种沉淀析出相(GP,θ″,θ′,θ),进而获得不同程度的析出强化效果[4]. Ding等人[5]研究发现固溶时效处理能对2219铝合金弧焊接头抗拉强度和疲劳强度具有一定的提升作用,较焊态分别提高43%和18%. Zhu等人[6]也报道了相似的研究结果,通过固溶时效处理可使得2219铝合金弧焊接头的抗拉强度提高44%,同时也能提高接头的耐腐蚀性能. Lü等人[7]研究了梯度失配对2219铝合金变极性TIG对接焊接头组织和性能的影响. 随着对接失配程度增加,接头强度逐渐降低. 搅拌摩擦焊接头组织和性能的影响. 随时效时间延长,接头强度能显著提高,但断后伸长率有一定降低. 周政等人[8]研究了不同气氛对2219合金TIG焊接头组织与性能的影响,研究发现采用氮气保护TIG焊可减小热影响区面积,提高断后伸长率和焊缝硬度. 综合上述研究,各种焊后热处理工艺对2219铝合金接头性能都能产生显著影响,但不同热处理工艺对接头性能调控的微观组织层面机理并未详细阐明. 如何通过优化焊后热处理工艺发挥材料本征组织-性能特点,实现焊缝强韧化,对进一步提升焊接质量十分关键.
以4 mm 2219-T6铝合金双频复合脉冲VPTIG焊接接头为研究对象,对比研究两种典型焊后热处理工艺(直接时效处理和固溶时效处理)对接头显微组织演变及力学性能的影响,探究不同热处理状态接头变形行为的微观机制,为2219铝合金电弧焊接接头热处理强化策略的优化设计提供理论参考.
1. 试验方法
焊接试件采用2219-T6铝合金板材,尺寸规格为240 mm × 120 mm × 4 mm. 焊前对试件板材进行表面油渍去除和酸碱洗表面氧化层去除,焊接方向垂直板材轧制方向. 采用1.2 mm ER2319焊丝作为填充金属,不开坡口. 通过北京航空航天大学自主研发的超音频脉冲电弧焊接系统(HPVP550)完成焊接试验,采用双频复合变极性脉冲方波电流(图1). 具体焊接工艺参数如表1所示.
表 1 焊接工艺参数Table 1. Welding parameters基值电流Ib/A 峰值电流IP/A 超音频脉冲
电流IHP/A低频脉冲
周期t2/ms超音频脉冲
周期t3/ms变极性电流
周期t1/ms送丝速度vs/(m·min−1) 焊接速度v/(m·min−1) 氩气流量Q/(L·min−1) 110 220 80 500 0.05 10 1.5 20 20 研究设计了两组热处理对比工艺. 根据相关研究报道,2219铝合金的峰值时效温度为175 ℃,保温12 h可获得较好的析出强化效果[5-6]. 因此,第一组为直接时效处理,即将焊接接头直接在175 ℃保温12 h后空冷至室温. 第二组为固溶时效处理,首先将接头在535 ℃保温1 h后快速水冷至室温,再将接头在175 ℃保温12 h后空冷至室温. 同时,将未经过热处理的焊态接头作为对照组.
采用线切割方法切取并制备金相试样,观察面磨抛后使用Keller试剂对金相试样进行化学侵蚀,使用ZEISS Scope.A1型光学显微镜对接头进行显微组织表征. 微观组织表征样品和力学性能测试取样位置和拉伸试样尺寸如图2所示. 采用截线法对平均晶粒尺寸进行统计测量,每组接头晶粒测量数不少于200个. 采用JEOL JSM 7100F型场发射扫描电镜(scanning electron microscopy, SEM)和FEI Tecnai G2 F20型透射电镜(transmission electron microscopy, TEM)对接头微观组织结构进行细致表征. 通过Image pro plus(IPP)软件对析出相特征尺寸进行定量统计,每组接头所统计的析出相粒子数量不少于100个. 其中,析出相总面积/视域面积百分比即为析出相面积分数. 使用INNOVATEST FALCON500型硬度计对焊接接头进行显微维氏硬度测试,加载载荷1.96 N,加载时间10 s. 在不同热处理状态接头不同区域测试至少10个点,统计硬度平均值作为该区域硬度. 根据GB/T 2651—2008 《焊接接头拉伸试验方法》标准采用INSTRON 5982型万能力学试验机进行室温单轴拉伸试验,拉伸应变速率为0.001 s−1. 测试前,铣掉拉伸试样焊缝处正反面余高.
2. 试验结果与分析
2.1 焊后热处理对晶粒形貌的影响
图3为不同热处理状态接头不同区域的光学金相组织. 从图3a~图3c可以发现,不同热处理状态2219铝合金接头热影响区内的α-Al晶粒皆以等轴晶形态为主. 焊态α-Al等轴晶平均直径为41.7 μm,直接时效态平均晶粒尺寸未发生明显增大,达到60.2 μm. 与前两者相比,固溶时效态热影响区等轴晶更加粗大,平均晶粒尺寸增大至96.4 μm. 受熔池凝固界面前沿元素偏聚促进异质形核的影响,氩弧焊可导致具有细晶特征的带状熔合区形成,位于热影响区和焊缝区之间,如图3d~图3f所示. 直接时效处理对熔合区附近的α-Al晶粒形态未造成显著影响,即热影响区为粗等轴晶,熔合区为细等轴晶,焊接区为粗大等轴枝晶且熔合区细晶尺寸未发生明显变化. 但从图3f可观察到,固溶时效态接头熔合区附近各区域内的α-Al晶粒都发生了一定程度的粗化,熔合区细晶组织特征未能得到保留. 如图3g所示,2219铝合金氩弧焊接头焊缝区主要以粗大的α-Al等轴枝晶为主,大量的α + θ共晶组织(图中黑色相)分布于初生α-Al枝晶臂之间. 直接时效处理未改变焊缝区的枝晶形貌特征(图3h),但固溶时效处理导致焊缝区共晶组织显著减少,枝晶形态转变为粗大柱状晶特征(图3i). 由于焊前母材经过轧制 + T6(固溶 + 人工时效)热处理,因此,母材α-Al晶粒由大量沿轧制方向排列的拉长变形晶粒 + 少量细小等轴晶构成(图3j),平均晶粒尺寸为13.4 μm. 经过直接时效处理后,拉长晶粒形貌特征基本保留,晶粒尺寸未发生显著变化,平均晶粒尺寸为22.6 μm. 但经过固溶时效处理后,母材区α-Al晶粒全部转变为粗大等轴晶,平均晶粒尺寸增大至70.1 μm. 从晶粒形态的演变可以推断,较低的时效温度(175 ℃)只能使母材变形晶粒发生轻微的粗化,而较高的固溶处理温度(535 ℃),可显著促进母材晶粒发生再结晶和粗化,使得变形晶粒转变为粗大的等轴晶.
图 3 不同热处理状态接头不同区域金相组织Figure 3. Metallography of different regions of the joints under different heat treatment conditions. (a) as-welded HAZ; (b) directly aging-treated HAZ; (c) solution and aging treated HAZ; (d) FZ line of the as-welded joint; (e) FZ line of the directly aging-treated joint; (f) FZ line of the solution and aging treated joint; (g) WS of the as-welded joint; (h) WS of the directly aging-treated joint; (i) WS of the solution and aging treated joint; (j) BM of the as-welded joint; (k) BM of the directly aging-treated joint; (l) BM of the solution and aging treated joint2.2 焊后热处理对第二相的影响
2219铝合金主要有两类常见第二相:一种是在凝固过程中产生的微米尺度共晶组织,由次生α-Al和θ-Al2Cu相构成[9],主要呈长条状沿初生α-Al晶界分布,少量分布于初生α-Al晶粒内部;第二种为时效处理导致的纳米尺度富Cu析出相,如GP,θ″和θ′等亚稳时效析出相,主要分布于α-Al基体中. 通过SEM可表征不同热处理状态2219铝合金接头焊缝区共晶组织形貌,如图4所示. 从图4a可以看出,焊态焊缝区内存在大量共晶组织,由次生α-Al(暗色)和θ-Al2Cu相(亮色)层状交替构成. 直接时效态焊缝区内的共晶组织相对焊态更加分散,单个共晶组织平均尺寸略微降低,如图4b所示. 经过固溶时效处理后,焊缝区内共晶组织进一步分散,长条状共晶组织消失,且共晶组织内的θ-Al2Cu相由层状转变为更细小的短棒状或球状,如图4c所示.
通过TEM对直接时效态和固溶时效态焊缝区内纳米尺度的析出相进行观察,表征结果如图5所示. 从图5a可以发现,直接时效态焊缝基体中存在低密度粗大θ′-Al2Cu析出相,并且析出相颗粒分布不均匀. 而固溶时效处理态焊缝区内存在大量弥散分布的细小θ″-Al3Cu析出相,如图5b所示. 对两种不同热处理接头焊缝区内共晶组织和时效析出相颗粒的特征尺寸进行定量统计,结果如表2所示. 从定量结果可以发现,固溶时效热处理可导致共晶组织减少和细化,同时导致基体内析出相尺寸减小且密度增大.
表 2 不同热处理焊缝区第二相特征尺寸定量统计结果Table 2. Characteristic sizes of second phases in the welding seams under different heat treatment conditions热处理状态 α + θ共晶组织 析出相 面积分数f(%) 周长l/μm 直径D/nm 厚度δ/nm 数量密度dn/nm−3 焊态 5.1 12.3 — — — 直接时效 4.7 11.2 106 5.4 11.7 固溶时效 2.5 1.8 22 0.6 68.5 不同热处理工艺导致的焊缝区第二相组织演变差异与合金元素扩散行为有密切关系. 由于焊缝金属经历了非平衡快速凝固过程,合金元素未得到充分扩散,不仅导致基体存在一定程度的合金元素过饱和,同时也易造成局部元素偏聚和偏析. 在一定高温下,伴随着合金元素重新溶于基体,焊缝共晶组织会发生回溶;而在较低的温度下保温,α-Al基体中过饱和合金元素将以第二相的形式析出,以上两个过程皆需要通过原子的长程扩散来实现. 在175 ℃直接时效过程中,较低的保温温度使得原子扩散能力有限,富Cu共晶组织相对稳定,经过长时间时效后共晶组织回溶程度较低,焊缝基体元素过饱和程度未得到显著提升. 在时效过程中,较低的元素过饱和度使得析出形核率和形核密度较低,同时元素偏聚和偏析相可为析出提供异质形核点,导致不均匀析出产生,即处于优势能态的第二相晶核将优先吸收周围过饱和原子,进而持续长大熟化. 另外,由于碟盘状θ′/θ″第二相颗粒可引入各向异性的共格应力场,由于析出相粒子之间的共格应力场交互作用,易造成析出相偏聚长大行为[10-11],如图5a中左侧粗大θ′-Al2Cu析出相偏聚形貌. 综合以上因素,直接时效处理最终易造成低密度且分布不均匀的粗大析出相形貌.
与之不同的是,固溶处理温度(535 ℃)已达到完全α-Al单相区,较高的保温温度使得原子扩散能力显著增强,共晶组织中的合金元素回溶于基体中,α-Al晶内基体中合金元素过饱和度显著增加. 固溶处理不仅减少了α-Al晶界附近共晶组织,同时能有效消除基体中的元素偏聚和偏析结构,有助于成分均匀化. 在相同的时效条件下,基体中较高的元素过饱和度和较均匀的元素分布导致较大的析出均匀形核率和形核密度,最终获得较细小和均匀的第二相析出形貌.
2.3 焊后热处理对力学性能的影响
对不同焊后热处理2219铝合金接头各区域的显微硬度进行测定,结果如表3所示. 结果表明,焊后接头较母材(base metal, BM)发生了显著软化,熔合区为接头强度最大区域,而热影响区(heat affected zone, HAZ)和焊缝区(weld metal, WM)硬度分别仅为母材硬度的78%和56%. 经过直接时效处理后,接头和母材硬度较焊态对应区域硬度略微升高,尤其是熔合区硬度升高显著,与母材硬度相当. 但是,热影响区和焊缝区硬度仍然较低,仅能达到母材硬度的83%和64%,接头软化现象依旧突出. 相比焊态和直接时效态,固溶时效处理使得接头各区域硬度得到了显著提升. 焊缝区硬度能达到母材硬度的93%,热影响区为接头强度最弱区域. 同时,接头各区域硬度分布更加均衡,接头软化现象得到明显改善,接头达到近似等强匹配. 但需要注意的是,固溶时效处理同时也导致母材硬度较焊态升高了16%.
表 3 不同热处理状态2219铝合金接头显微硬度(HV0.2)Table 3. Microhardness of 2219 aluminum alloy joints under different heat treatment conditions热处理状态 热影响区 熔合区 焊缝 母材 焊态 104 112 76 134 直接时效处理 117 141 89 140 固溶时效处理 144 155 148 156 不同热处理状态2219铝合金接头拉伸性能如表4所示. 焊态接头强度和断后伸长率相比母材发生了显著降低,分别仅为母材的57%和45%. 焊态接头强塑性显著恶化与接头软化密切相关. 由于接头焊缝区强度较母材区显著降低,在拉伸过程中,焊缝区首先发生屈服,导致后续塑性变形局限在焊缝区内发生,而母材区几乎不发生塑性变形,即发生显著的应变局域化,最终导致试样整体强度和断后伸长率降低. 经过直接时效处理后,接头整体强度较焊态略微升高,强度系数达到0.60,但断后伸长率却进一步降低至2.0%. 经过固溶时效处理后,接头强度较焊态接头发生显著升高,强度系数达到0.84,并且接头断后伸长率升高至7.0%,达到母材断后伸长率的56%.
表 4 不同热处理状态2219铝合金接头拉伸性能Table 4. Tensile properties of 2219 aluminum alloy joints under different heat treatment conditions热处理状态 抗拉强度
Rm/MPa断后伸长率
A(%)强度系数
φ2219-T6母材 439 12.5 — 焊态 253 5.5 0.57 直接时效处理 264 2.0 0.60 固溶时效处理 371 7.0 0.84 直接时效处理后,焊缝区为低密度不均匀分布的粗大θ′-Al2Cu析出相,其与基体保持半共格关系,只能引入较弱的共格应力场,且与位错的交互方式主要为绕过机制. 此种析出相组织析出强化效果较弱,对焊缝强化效果有限[12]. 焊态和直接时效态接头各区域的强度差异较大,导致拉伸过程中塑性应变主要集中在显著软化的焊缝区内,进而导致接头整体拉伸性能显著变差. 相比而言,固溶时效处理虽然导致α-Al晶粒发生粗化,但焊缝区高密度纳米θ″-Al3Cu析出相可引入较强的共格应力场. 同时,其与位错交互方式主要为切过机制,可产生更显著的析出强化效应[13-14]. 另外,接头各区域强度匹配更加均衡,促进接头整体塑性均匀变形,可获得较大的均匀断后伸长率,伴随显著的应变硬化可获得较高的抗拉强度.
2.4 断裂行为
为研究焊后热处理对拉伸断裂行为的影响,对拉伸样品断口附近区域进行截面金相组织观察,结果如图6所示. 焊态和直接时效态接头拉伸断裂位置位于熔合区附近1 ~ 2 mm距离范围的焊缝区内,且断裂裂纹与拉伸方向呈约45°. 通过高倍数金相照片(图6中插图)可以观察到,焊态和直接时效态接头断裂裂纹倾向于沿长条状共晶组织扩展.
造成以上现象主要是由于焊缝区显著软化,拉伸过程中主要的塑性应变将被局限在焊缝区,即发生显著的应变局域化现象. 沿晶界分布的长条共晶组织与基体之间的相界面易存在应力集中,可以为拉伸裂纹提供低能扩展通道. 而经过固溶时效处理后,接头拉伸断裂位于紧挨着熔合区的热影响区内,且裂纹扩展方向与拉伸方向几乎呈90°. 从硬度测试结果(表3)可知,固溶时效态接头热影响区为硬度最低的区域,拉伸过程中应变易集中于此区域,造成断裂在此区域萌生和扩展.
3. 结论
(1) 与2219铝合金双频复合脉冲TIG焊态组织相比,直接时效处理(175 ℃/12 h-空冷)对α-Al晶粒和共晶组织形貌影响较小,并导致焊缝区形成低密度不均匀分布的粗大θ′-Al2Cu析出相;固溶时效处理(535 ℃/1 h-水淬 + 175 ℃/12 h-空冷)使得α-Al晶粒发生粗化,同时共晶组织减少且细化,在焊缝区引入高密度均匀细小的θ″-Al3Cu相析出相.
(2) 直接时效处理对2219铝合金双频复合脉冲TIG焊接头强化作用有限,焊缝区硬度仅为89 HV0.2 (母材硬度64%),强度系数仅达到0.60,断后伸长率降低至2.0%;固溶时效处理可显著改善接头软化问题,接头各区域硬度接近母材硬度,强度系数升高至0.84,断后伸长率达到7.0%.
(3) 直接时效态接头拉伸断裂于焊缝区,显著的接头软化和不均衡的强度匹配导致接头均匀塑性变形减小和整体强度显著降低;固溶时效处理可获得显著的接头析出强化效应,接头均匀塑性变形能力得到提升,拉伸断裂于热影响区.
-
表 1 典型高熵非晶合金系
Table 1 Typical high-entropy amorphous alloy system
高熵非晶合金系 制备方法 临界尺寸d/mm Zr41.2Ti13.8Cu12.5Ni10Be22.5[24] 浇铸法 >50 Ti20Zr20Hf20Cu20Ni20[23] 铜模铸造法 1.5 Sr20Ca20Yb20Mg20Zn20[25] 铜模铸造法 4 Er20Tb20Dy20Ni20Al20[25] 铜模铸造法 2 Pd20Pt20Cu20Ni20P20[26] 熔渣包覆水淬法 10 Fe20Si20B20Al20Ni20[27] 球磨法 — Ti20Zr20Cu20Ni20Be20[28] 铜模铸造法 3 CoCrCuFeNiZr0.6[4] 熔体快淬法 — Fe25Co25Ni25(B,Si)25[29] 铜模铸造法 1.5 Er18Gd18Y20Al24Co20[30] 铜模铸造法 5 Fe25Co25Ni25Mo5P10B10[31] 熔体快淬法 1.2 (Fe1/3Co1/3Ni1/3)80(P1/2B1/2)20[32] 熔体快淬法 2 Fe46.8Mo22.7Cr13.6Co7.6C4.8B2.3Y1.2Si1.0[33] 激光熔覆 — -
[1] Wang W. High-entropy metallic glasses[J]. Jom, 2014, 66(10): 2067 − 2077. doi: 10.1007/s11837-014-1002-3
[2] Xie L, Xiong X, Zeng Y, et al. The wear properties and mechanism of detonation sprayed iron-based amorphous coating[J]. Surface and Coatings Technology, 2019, 366: 146 − 155. doi: 10.1016/j.surfcoat.2019.03.028
[3] Yeh J W, Chen Y L, Lin S J, et al. High-entropy alloys-A new era of exploitation[J]. Materials Science Forum, 2007, 560: 1 − 9.
[4] Guo S, Hu Q, Ng C, et al. More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase[J]. Intermetallics, 2013, 41: 96 − 103. doi: 10.1016/j.intermet.2013.05.002
[5] Yuan Z, Tian W, Li F, et al. Microstructure and properties of high-entropy alloy reinforced aluminum matrix composites by spark plasma sintering[J]. Journal of Alloys and Compounds, 2019, 806: 901 − 908. doi: 10.1016/j.jallcom.2019.07.185
[6] Zhou K, Sun B, Liu G, et al. FeCoNiAlSi high entropy alloys with exceptional fundamental and application-oriented magnetism[J]. Intermetallics, 2020, 122: 106801. doi: 10.1016/j.intermet.2020.106801
[7] Li H, Xie X, Zhao K, et al. In vitro and in vivo studies on biodegradable CaMgZnSrYb high-entropy bulk metallic glass[J]. Acta Biomaterialia, 2013, 9(10): 8561 − 8573. doi: 10.1016/j.actbio.2013.01.029
[8] Butler T M, Weaver M L. Oxidation behavior of arc melted AlCoCrFeNi multi-component high-entropy alloys[J]. Journal of Alloys and Compounds, 2016, 674: 229 − 244. doi: 10.1016/j.jallcom.2016.02.257
[9] Nagase T, Mizuuchi K, Nakano T. Solidification microstructures of the ingots obtained by arc melting and cold crucible levitation melting in TiNbTaZr medium-entropy alloy and TiNbTaZrX (X= V, Mo, W) high-entropy alloys[J]. Entropy, 2019, 21(5): 483. doi: 10.3390/e21050483
[10] Zhang P, Li Y, Chen Z, et al. Oxidation response of a vacuum arc melted NbZrTiCrAl refractory high entropy alloy at 800–1 200 ℃[J]. Vacuum, 2019, 162: 20 − 27. doi: 10.1016/j.vacuum.2019.01.026
[11] Hou L, Hui J, Yao Y, et al. Effects of boron content on microstructure and mechanical properties of AlFeCoNiBx high entropy alloy prepared by vacuum arc melting[J]. Vacuum, 2019, 164: 212 − 218.
[12] Wang H, Zhu Z, Chen H, et al. Effect of cyclic rapid thermal loadings on the microstructural evolution of a CrMnFeCoNi high-entropy alloy manufactured by selective laser melting[J]. Acta Materialia, 2020, 196: 609 − 625. doi: 10.1016/j.actamat.2020.07.006
[13] Wang Q, Amar A, Jiang C, et al. CoCrFeNiMo0.2 high entropy alloy by laser melting deposition: prospective material for low temperature and corrosion resistant applications[J]. Intermetallics, 2020, 119: 106727. doi: 10.1016/j.intermet.2020.106727
[14] Qiu X, Liu C. Microstructure and properties of Al2CrFeCoCuTiNix high-entropy alloys prepared by laser cladding[J]. Journal of Alloys and Compounds, 2013, 553: 216 − 220. doi: 10.1016/j.jallcom.2012.11.100
[15] Yue T, Xie H, Lin X, et al. Solidification behaviour in laser cladding of AlCoCrCuFeNi high-entropy alloy on magnesium substrates[J]. Journal of Alloys and Compounds, 2014, 587: 588 − 593. doi: 10.1016/j.jallcom.2013.10.254
[16] Fu Z, Chen W, Fang S, et al. Alloying behavior and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering[J]. Journal of Alloys and Compounds, 2013, 553: 316 − 323. doi: 10.1016/j.jallcom.2012.11.146
[17] Chen Z, Chen W, Wu B, et al. Effects of Co and Ti on microstructure and mechanical behavior of Al0.75FeNiCrCo high entropy alloy prepared by mechanical alloying and spark plasma sintering[J]. Materials Science and Engineering:A, 2015, 648: 217 − 224. doi: 10.1016/j.msea.2015.08.056
[18] Kang B, Lee J, Ryu H J, et al. Ultra-high strength WNbMoTaV high-entropy alloys with fine grain structure fabricated by powder metallurgical process[J]. Materials Science and Engineering:A, 2018, 712: 616 − 624. doi: 10.1016/j.msea.2017.12.021
[19] Rane K, Strano M. A comprehensive review of extrusion-based additive manufacturing processes for rapid production of metallic and ceramic parts[J]. Advances in Manufacturing, 2019, 7(2): 155 − 173. doi: 10.1007/s40436-019-00253-6
[20] 王磊磊, 张占辉, 徐得伟, 等. 双脉冲电弧增材制造数值模拟与晶粒细化机理[J]. 焊接学报, 2019, 40(4): 137 − 140,147. doi: 10.12073/j.hjxb.2019400114 Wang Leilei, Zhang Zhanhui, Xu Dewei, et al. Numerical simulation and mechanism study of grain refinement during double pulsed wire arc additive manufacturing[J]. Transactions of the China Welding Institution, 2019, 40(4): 137 − 140,147. doi: 10.12073/j.hjxb.2019400114
[21] Mendoza M Y, Samimi P, Brice D A, et al. Microstructures and grain refinement of additive-manufactured Ti-xW alloys[J]. Metallurgical and Materials Transactions A, 2017, 48(7): 3594 − 3605. doi: 10.1007/s11661-017-4117-7
[22] Bermingham M, Stjohn D, Krynen J, et al. Promoting the columnar to equiaxed transition and grain refinement of titanium alloys during additive manufacturing[J]. Acta Materialia, 2019, 168: 261 − 274. doi: 10.1016/j.actamat.2019.02.020
[23] Ma L, Wang L, Zhang T, et al. Bulk glass formation of Ti-Zr-Hf-Cu-M (M=Fe, Co, Ni) alloys[J]. Materials Transactions, 2002, 43(2): 277 − 280. doi: 10.2320/matertrans.43.277
[24] Peker A, Johnson W L. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5[J]. Applied Physics Letters, 1993, 63(17): 2342 − 2344. doi: 10.1063/1.110520
[25] Gao X, Zhao K, Ke H, et al. High mixing entropy bulk metallic glasses[J]. Journal of Non-Crystalline Solids, 2011, 357(21): 3557 − 3560. doi: 10.1016/j.jnoncrysol.2011.07.016
[26] Takeuchi A, Chen N, Wada T, et al. Pd20Pt20Cu20Ni20P20 high-entropy alloy as a bulk metallic glass in the centimeter[J]. Intermetallics, 2011, 19(10): 1546 − 1554. doi: 10.1016/j.intermet.2011.05.030
[27] Wang J, Zheng Z, Xu J, et al. Microstructure and magnetic properties of mechanically alloyed FeSiBAlNi (Nb) high entropy alloys[J]. Journal of Magnetism and Magnetic Materials, 2014, 355: 58 − 64. doi: 10.1016/j.jmmm.2013.11.049
[28] Ding H Y, Yao K F. High entropy Ti20Zr20Cu20Ni20Be20 bulk metallic glass[J]. Journal of Non-Crystalline Solids, 2013, 364: 9 − 12. doi: 10.1016/j.jnoncrysol.2013.01.022
[29] Qi T, Li Y, Takeuchi A, et al. Soft magnetic Fe25Co25Ni25(B, Si)25 high entropy bulk metallic glasses[J]. Intermetallics, 2015, 66: 8 − 12. doi: 10.1016/j.intermet.2015.06.015
[30] Kim J, Oh H S, Kim J, et al. Utilization of high entropy alloy characteristics in Er-Gd-Y-Al-Co high entropy bulk metallic glass[J]. Acta Materialia, 2018, 155: 350 − 361. doi: 10.1016/j.actamat.2018.06.024
[31] Wu K, Liu C, Li Q, et al. Magnetocaloric effect of Fe25Co25Ni25Mo5P10B10 high-entropy bulk metallic glass[J]. Journal of Magnetism and Magnetic Materials, 2019, 489: 165404. doi: 10.1016/j.jmmm.2019.165404
[32] Li C, Li Q, Li M, et al. New ferromagnetic (Fe1/3Co1/3Ni1/3)80(P1/2B1/2)20 high entropy bulk metallic glass with superior magnetic and mechanical properties[J]. Journal of Alloys and Compounds, 2019, 791: 947 − 951. doi: 10.1016/j.jallcom.2019.03.375
[33] Hou X, Du D, Chang B, et al. Influence of scanning speed on microstructure and properties of laser cladded Fe-based amorphous coatings[J]. Materials, 2019, 12(8): 1279. doi: 10.3390/ma12081279
[34] Zhao K, Xia X, Bai H, et al. Room temperature homogeneous flow in a bulk metallic glass with low glass transition temperature[J]. Applied Physics Letters, 2011, 98(14): 141913. doi: 10.1063/1.3575562
[35] 陶娟. FeCoNi 基软磁高熵非晶合金及其相应的高熵合金的性能研究[D]. 郑州: 郑州大学, 2017. Tao Juan. Research on the properties of FeCoNi-based soft magnetic high-entropy amorphous alloy and its corresponding high-entropy alloy[D]. Zhengzhou: Zhengzhou University , 2017.
[36] Wang Y, Xie X, Li H, et al. Biodegradable CaMgZn bulk metallic glass for potential skeletal application[J]. Acta Biomaterialia, 2011, 7(8): 3196 − 3208. doi: 10.1016/j.actbio.2011.04.027
[37] Ding J, Inoue A, Han Y, et al. High entropy effect on structure and properties of (Fe, Co, Ni, Cr)-B amorphous alloys[J]. Journal of Alloys and Compounds, 2017, 696: 345 − 352. doi: 10.1016/j.jallcom.2016.11.223
[38] Wang H, Liu L, Dou Y, et al. Preparation and corrosion resistance of electroless Ni-P/SiC functionally gradient coatings on AZ91D magnesium alloy[J]. Applied Surface Science, 2013, 286: 319 − 327. doi: 10.1016/j.apsusc.2013.09.079
[39] Yang H, Gao Y, Qin W, et al. Microstructure and corrosion behavior of electroless Ni-P on sprayed Al-Ce coating of 3003 aluminum alloy[J]. Surface and Coatings Technology, 2015, 281: 176 − 183. doi: 10.1016/j.surfcoat.2015.10.001
[40] Inoue A, Takeuchi A. Recent development and application products of bulk glassy alloys[J]. Acta Materialia, 2011, 59(6): 2243 − 2267. doi: 10.1016/j.actamat.2010.11.027
[41] Lucas M S, Mauger L, Muñoz J A, et al. Magnetic and vibrational properties of high-entropy alloys[J]. Journal of Applied Physics, 2011, 109(7): 07E307. doi: 10.1063/1.3538936
[42] Silveyra J M, Ferrara E, Huber D L, et al. Soft magnetic materials for a sustainable and electrified world[J]. Science, 2018, 362(6413): 1 − 9.
[43] Huo J, Huo L, Li J, et al. High-entropy bulk metallic glasses as promising magnetic refrigerants[J]. Journal of Applied Physics, 2015, 117(7): 073902. doi: 10.1063/1.4908286
[44] Huo J, Huo L, Men H, et al. The magnetocaloric effect of Gd-Tb-Dy-Al-M (M=Fe,Coand Ni) high-entropy bulk metallic glasses[J]. Intermetallics, 2015, 58: 31 − 35. doi: 10.1016/j.intermet.2014.11.004
[45] Belyea D D, Lucas M, Michel E, et al. Tunable magnetocaloric effect in transition metal alloys[J]. Scientific Reports, 2015, 5(1): 1 − 8. doi: 10.9734/JSRR/2015/14076
[46] Satake M, Bitoh T. Synthesis of Fe-Co-Ni-(B, Si, C) ferromagnetic high entropy amorphous alloys and their thermal and magnetic properties[J]. Journal of the Japan Society of Powder and Powder Metallurgy, 2018, 65(7): 401 − 406. doi: 10.2497/jjspm.65.401
[47] George E P, Raabe D, Ritchie R O. High-entropy alloys[J]. Nature Reviews Materials, 2019, 4(8): 515 − 534. doi: 10.1038/s41578-019-0121-4
[48] Marques J G, Costa A L, Pereira C. Gibbs free energy (ΔG) analysis for the NaOH (sodium-oxygen-hydrogen) thermochemical water splitting cycle[J]. International Journal of Hydrogen Energy, 2019, 44(29): 14536 − 14549. doi: 10.1016/j.ijhydene.2019.04.064
[49] Liu W, Wu Y, He J, et al. Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy[J]. Scripta Materialia, 2013, 68(7): 526 − 529. doi: 10.1016/j.scriptamat.2012.12.002
[50] Craievich P, Weinert M, Sanchez J, et al. Local stability of nonequilibrium phases[J]. Physical Review Letters, 1994, 72(19): 3076. doi: 10.1103/PhysRevLett.72.3076
[51] 杨铭, 刘雄军, 吴渊, 等. 高熵非晶合金研究进展[J]. 中国科学:物理学 力学 天文学, 2020, 50(6): 21 − 33. Yang Ming, Liu Xiongjun, Wu Yuan, et al. Research progress in high-entropy amorphous alloys[J]. Science in China: Physics Mechanics Astronomy, 2020, 50(6): 21 − 33.
[52] Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys[J]. Acta Materialia, 2013, 61(13): 4887 − 4897. doi: 10.1016/j.actamat.2013.04.058
[53] 王天琪, 李天旭, 李亮玉, 等. 复杂结构薄壁件电弧增材制造离线编程技术[J]. 焊接学报, 2019, 40(5): 42 − 47. doi: 10.12073/j.hjxb.2019400125 Wang Tianqi, Li Tianxu, Li Liangyu, et al. Off-line programming technology for arc additive manufacturing of thin-walled components with complex structures[J]. Transactions of the China Welding Institution, 2019, 40(5): 42 − 47. doi: 10.12073/j.hjxb.2019400125
[54] Carroll B E, Palmer T A, Beese A M. Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing[J]. Acta Materialia, 2015, 87: 309 − 320. doi: 10.1016/j.actamat.2014.12.054
[55] 杨东青, 王小伟, 黄勇, 等. 熔化极电弧增材制造18Ni马氏体钢组织和性能[J]. 焊接学报, 2020, 41(8): 6 − 9,21. doi: 10.12073/j.hjxb.20200608002 Yang Dongqing, Wang Xiaowei, Huang Yong, et al. Microstructure and mechanical properties of 18Ni maraging steel deposited by gas metal arc additive manufacturing[J]. Transactions of the China Welding Institution, 2020, 41(8): 6 − 9,21. doi: 10.12073/j.hjxb.20200608002
[56] Aboulkhair N T, Simonelli M, Parry L, et al. 3D printing of aluminium alloys: additive manufacturing of aluminium alloys using selective laser melting[J]. Progress in Materials Science, 2019, 106: 100578. doi: 10.1016/j.pmatsci.2019.100578
[57] 苗玉刚, 曾阳, 王腾, 等. 基于BC-MIG焊的铝/钢异种金属增材制造工艺[J]. 焊接学报, 2015, 36(7): 5 − 8. Miao Yugang, Zeng Yang, Wang Teng, et al. Additive manufacturing process of aluminum / steel dissimilar metal based on BC-MIG welding[J]. Transactions of the China Welding Institution, 2015, 36(7): 5 − 8.
[58] 刘黎明, 贺雅净, 李宗玉, 等. 不同路径下316不锈钢电弧增材组织和性能[J]. 焊接学报, 2020, 41(12): 13 − 19. doi: 10.12073/j.hjxb.20200815002 Liu Liming, He Yajing, Li Zongyu, et al. Research on microstructure and mechanical properties of 316 stainless steel fabricated by arc additive manufacturing in different paths[J]. Transactions of the China Welding Institution, 2020, 41(12): 13 − 19. doi: 10.12073/j.hjxb.20200815002
[59] Aramian A, Razavi S M J, Sadeghian Z, et al. A review of additive manufacturing of cermets[J]. Additive Manufacturing, 2020, 33: 101130. doi: 10.1016/j.addma.2020.101130
[60] Wang Y M, Voisin T, McKeown J T, et al. Additively manufactured hierarchical stainless steels with high strength and ductility[J]. Nature Materials, 2018, 17(1): 63 − 71. doi: 10.1038/nmat5021
[61] 尹燕, 赵超, 潘存良, 等. 气体流量对射频等离子体球化GH4169合金粉末的影响[J]. 焊接学报, 2019, 40(11): 100 − 105. doi: 10.12073/j.hjxb.2019400295 Yin Yan, Zhao Chao, Pan Cunliang, et al. Effect of gas flow rate on the characteristics of RF plasma spheroidized GH4169 alloy powder[J]. Transactions of the China Welding Institution, 2019, 40(11): 100 − 105. doi: 10.12073/j.hjxb.2019400295
[62] 要玉宏, 梁霄羽, 金耀华, 等. 硼对AlMo0.5NbTa0.5TiZr难熔高熵合金组织和高温氧化性能的影响[J]. 表面技术, 2020, 49(2): 235 − 242,287. Yao Yuhong, Liang Xiaoyu, Jin Yaohua, et al. Effect of B addition on microstructure and high temperature oxidation resistance of AlMo0.5NbTa0.5TiZr refractory high-entropy alloys[J]. Surface Technology, 2020, 49(2): 235 − 242,287.
[63] 杨阳祎玮, 易敏, 胥柏香. 粉末增材制造微结构的非等温相场模拟[J]. 中南大学学报(自然科学版), 2020, 51(11): 3019 − 3031. doi: 10.11817/j.issn.1672-7207.2020.11.003 Yangyang Yiwei, Yi Min, Xu Baixiang. Non-isothermal phase-field simulation of microstructure in powder-based additive manufacturing[J]. Journal of Central South University (Science and Technology), 2020, 51(11): 3019 − 3031. doi: 10.11817/j.issn.1672-7207.2020.11.003
[64] Pauly S, Löber L, Petters R, et al. Processing metallic glasses by selective laser melting[J]. Materials Today, 2013, 16(1−2): 37 − 41. doi: 10.1016/j.mattod.2013.01.018
[65] Pauly S, Schricker C, Scudino S, et al. Processing a glass-forming Zr-based alloy by selective laser melting[J]. Materials & Design, 2017, 135: 133 − 141.
[66] Guo J, Goh M, Zhu Z, et al. On the machining of selective laser melting CoCrFeMnNi high-entropy alloy[J]. Materials & Design, 2018, 153: 211 − 220.
[67] 石杰. 3D打印高熵合金—铁基非晶合金复合材料[D]. 武汉: 华中科技大学, 2019. Shi Jie. Processing high entropy alloy-Fe-based amorphous alloy composites by 3D-printing[D]. Wuhan: Huazhong University of Science and Technology , 2019.
[68] Jung H Y, Choi S J, Prashanth K G, et al. Fabrication of Fe-based bulk metallic glass by selective laser melting: A parameter study[J]. Materials & Design, 2015, 86: 703 − 708.
[69] Di Ouyang , Li N, Xing W, et al. 3D printing of crack-free high strength Zr-based bulk metallic glass composite by selective laser melting[J]. Intermetallics, 2017, 90: 128 − 134.
[70] Song H, Lei J, Xie J, et al. Laser melting deposition of K403 superalloy: the influence of processing parameters on the microstructure and wear performance[J]. Journal of Alloys and Compounds, 2019, 805: 551 − 564. doi: 10.1016/j.jallcom.2019.07.102
[71] 李青宇, 李涤尘, 张航, 等. 激光熔覆沉积成形NbMoTaTi难熔高熵合金的组织与强度研究[J]. 航空制造技术, 2018, 61(10): 61 − 67. Li Qingyu, Li Dichen, Zhang Hang, et al. Study on structure and strength of NbMoTaTi refractory high entropy alloy fabricated by laser cladding deposition[J]. Aeronautical Manufacturing Technology, 2018, 61(10): 61 − 67.
[72] 黄留飞, 孙耀宁, 季亚奇, 等. 激光熔化沉积AlCoCrFeNi2.5高熵合金的组织与力学性能研究[J]. 中国激光, 2021, 48(6): 103 − 110. Huang Liufei, Sun Yaoning, Ji Yaqi, et al. Investigation of microstructures and mechanical properties of laser-melting-deposited AlCoCrFeNi2.5 high entroy alloy[J]. Chinese Journal of Lasers, 2021, 48(6): 103 − 110.
[73] Shu F, Liu S, Zhao H, et al. Structure and high-temperature property of amorphous composite coating synthesized by laser cladding FeCrCoNiSiB high-entropy alloy powder[J]. Journal of Alloys and Compounds, 2018, 731: 662 − 666. doi: 10.1016/j.jallcom.2017.08.248
[74] Shu F, Yang B, Dong S, et al. Effects of Fe-to-Co ratio on microstructure and mechanical properties of laser cladded FeCoCrBNiSi high-entropy alloy coatings[J]. Applied Surface Science, 2018, 450: 538 − 544. doi: 10.1016/j.apsusc.2018.03.128
-
期刊类型引用(4)
1. 王秋影,邱培现,孙进发,田洪雷,朱宗涛. 超声振动辅助铝/钢激光-MIG熔钎焊外观成形、组织以及拉伸性能研究. 精密成形工程. 2023(05): 123-130 . 百度学术
2. 张佳琪,刘云祺,何绍雄,刘犇,朱宗涛. 超声振动钢/铝对接接头激光-MIG复合熔钎焊工艺研究. 中国激光. 2022(16): 106-114 . 百度学术
3. 王仁杰,史圣泰. 基于机器视觉的增材制造激光熔覆熔池边缘检测和行为参数分析. 中国金属通报. 2021(07): 209-210+214 . 百度学术
4. 陈琪昊,崔山成,林三宝,高翔,张澳. 超声频脉冲电信号耦合前后铝合金TIG堆焊接头特点. 焊接学报. 2020(10): 42-46+99-100 . 本站查看
其他类型引用(6)