高级检索

W6钢电子束焊后表面重熔硬化

陈国庆, 滕新颜, 树西, 张秉刚

陈国庆, 滕新颜, 树西, 张秉刚. W6钢电子束焊后表面重熔硬化[J]. 焊接学报, 2021, 42(12): 1-6. DOI: 10.12073/j.hjxb.20210413002
引用本文: 陈国庆, 滕新颜, 树西, 张秉刚. W6钢电子束焊后表面重熔硬化[J]. 焊接学报, 2021, 42(12): 1-6. DOI: 10.12073/j.hjxb.20210413002
CHEN Guoqing, TEN Xinyan, SHU Xi, ZHANG Binggang. Hardening effect of electron beam surface remelting on W6 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 1-6. DOI: 10.12073/j.hjxb.20210413002
Citation: CHEN Guoqing, TEN Xinyan, SHU Xi, ZHANG Binggang. Hardening effect of electron beam surface remelting on W6 steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2021, 42(12): 1-6. DOI: 10.12073/j.hjxb.20210413002

W6钢电子束焊后表面重熔硬化

基金项目: 国家自然科学基金资助项目(51774106)
详细信息
    作者简介:

    陈国庆,副教授,博士研究生导师;主要从事新材料及异种材料电子束焊接和电子束熔丝沉积制造; Email:chenguoqing@hit.edu.cn.

  • 中图分类号: TG 456.3

Hardening effect of electron beam surface remelting on W6 steel

  • 摘要: 高速钢是一种具有高硬度、高耐磨性的特殊工具钢.对于进行过球化退火的高速钢,其显微硬度损失较大,严重影响其应用.为恢复球化退火W6Mo5Cr4V2高速钢表面的显微硬度,同时保证其内部良好的韧性不受影响,采用电子束表面重熔对其表面进行硬化.结果表明,重熔表面整体呈现平整光滑状态,存在小尺寸熔坑,重熔层内部呈现胞状树枝晶组织,主要由马氏体、残余奥氏体、晶间网状M2C共晶碳化物以及细棒状MC碳化物组成,呈现不均匀的条带状分布,在重熔区边界存在未熔碳化物,在重熔区中心区域碳化物均匀性较高,并对晶间碳化物的形成机理进行了分析.经过电子束表面重熔,由于晶内针状马氏体以及晶界脆性碳化物生成,W6Mo5Cr4V2高速钢表面的显微硬度由283 HV提高到800 HV以上,母材的显微硬度恢复效果显著.
    Abstract: High-speed steel is a kind of special tool steel with high hardness and wear resistance. The microhardness loss of high-speed steel that is subjected to spheroidizing annealing is large, which significantly affects its application. In order to increase the microhardness of spheroidal annealing W6Mo5Cr4V2 high-speed steel surface, and to ensure its good internal toughness, the electron beam surface remelting is used to harden the surface. The remelting surface is flat and smooth with small craters. Cellular dendrites are observed in the remelting layer, which is mainly composed of martensite, residual austenite, M2C eutectic carbide, and fine rod-shaped MC carbide, the formation process and types of intercrystalline carbides are analyzed. After electron beam surface remelting, the microhardness of the W6Mo5Cr4V2 high-speed steel surface is increased from 283 HV to more than 800 HV, indicating the prominent recovery effect of microhardness.
  • 图  1   电子束表面重熔示意图

    Figure  1.   Schematic diagram of electron beam surface remelting

    图  2   不同热输入下接头显微硬度

    Figure  2.   Microhardness of joints under different heat input

    图  3   W6高速钢表面重熔宏观形貌及3D表征

    Figure  3.   Macro morphology and 3D characterization of W6 high-speed steel remelted surface. (a) macro morphology; (b) 3D characterization

    图  4   W6高速钢显微组织

    Figure  4.   Microstructure of W6 high-speed steel. (a) before surface remelting; (b) after surface remelting

    图  5   球化退火W6高速钢扫描电镜图像

    Figure  5.   SEM image of spheroidizing annealing W6 steel

    图  6   片状共晶M2C

    Figure  6.   Lamellar M2C eutectic carbide. (a) lamellar M2C eutectic carbide; (b) XRD results

    图  7   马氏体扫描电镜图像

    Figure  7.   SEM image of martensite. (a) fine flake marentsite; (b) coarse martensite

    图  8   未熔球状MC型碳化物

    Figure  8.   Unmelted spherical MC carbide

    图  9   晶间碳化物形貌与HAADF元素面分布

    Figure  9.   Morphology of intercrystalline carbide and HAADF imaging. (a) morphology of intercrystalline carbide; (b) distribution of W; (c) distribution of Cr; (d) distribution of C; (e) distribution of V; (f) distribution of Mo

    图  10   W6高速钢电子束重熔层显微硬度

    Figure  10.   Microhardness of electron beam remelted layer of W6 high speed steel

    表  1   W6 钢与16 Mn钢化学成分(质量分数,%)

    Table  1   Composition of W6 steel and 16 Mn steel

    材料CWMoCrVMnSiFe
    W60.916.055.304.151.950.350.25余量
    16 Mn0.140.021.440.33 余量
    下载: 导出CSV

    表  2   电子束表面重熔工艺参数

    Table  2   Electron beam surface remelting process parameters

    聚焦电流If/mA电子束流Ib/mA加速电压U/kV扫描幅值Vxy/mm扫描频率
    f/Hz
    扫描速度v/(mm·min−1)
    2 850505512200600
    下载: 导出CSV
  • [1] 李远波, 吴德成, 刘国跃, 等. 焊接电流对M51/B318异种金属精密电阻焊接头质量的影响[J]. 焊接学报, 2019, 40(5): 73 − 78. doi: 10.12073/j.hjxb.2019400130

    Li Yuanbo, Wu Decheng, Liu Guoyue, et al. Effect of welding current on welding quality of M51/B318 dissimilar metal joint using resistance welding[J]. Transactions of the China Welding Institution, 2019, 40(5): 73 − 78. doi: 10.12073/j.hjxb.2019400130

    [2]

    Zhou X F, Fang F, Jiang J Q, et al. Refining carbide dimensions in AISI M2 high speed steel by increasing solidification rates and spheroidising heat treatment[J]. Materials Science and Technology, 2014, 30(1): 116 − 122. doi: 10.1179/1743284713Y.0000000338

    [3]

    Yan X G, Li D Y. Effects of the sub-zero treatment condition on microstructure, mechanical behavior and wear resistance of W9Mo3Cr4V high speed steel[J]. Wear, 2013, 302(1−2): 854 − 862. doi: 10.1016/j.wear.2012.12.037

    [4]

    Dhokey N B, Hake A, Kadu S, et al. Influence of cryoprocessing on mechanism of carbide development in cobalt-bearing high-speed teel (M35)[J]. Metallurgical and Materials Transactions A, 2014, 45(3): 1508 − 1516. doi: 10.1007/s11661-013-2067-2

    [5]

    Zhang Guoqing, Yuan Hua, Jiao Dongling, et al. Microstructure evolution and mechanical properties of T15 high speed steel prepared by twin-atomiser spray forming and thermo-mechanical processing[J]. Materials Science & Engineering A, 2012, 558: 566 − 571.

    [6]

    Ma Liping, Zhao Wenxiang, Liang Zhiqiang, et al. An investigation on the mechanical property changing mechanism of high speed steel by pulsed magnetic treatment[J]. Materials Science & Engineering A, 2014, 609: 16 − 25.

    [7] 秦宇飞, 刘剑, 罗湘燕. 热处理对低合金高速钢碳化物的影响[J]. 材料热处理技术, 2010, 24: 216 − 219.

    Qin Yufei, Liu Jian, Luo Xiangyan. Effect of heat treatment on carbide in low alloy high speed steel[J]. Material & Heat Treatment, 2010, 24: 216 − 219.

    [8]

    Yin Yan, Kang Ping, Zhang Ruihua, et al. Effect of heat treatment on microstructure and properties of VG10 and 3Cr13 dissimilar welded joints[J]. China Welding, 2021, 30(1): 21 − 29.

    [9]

    Jisoo Kim, Jin-Seok Kim, Eun-Goo Kang, et al. Surface modification of the metal plates using continuous electron beam process (CEBP)[J]. Applied Surface Science, 2014, 311: 201 − 207. doi: 10.1016/j.apsusc.2014.05.041

    [10]

    Hao S, Gao B, Wu A, et al. Surface modification of steels and magnesium alloy by high current pulsed electron beam[J]. Nuclear Instruments & Methods in Physics Research Section B-Bear Intercations with Materials and Atoms, 2005, 240: 646 − 652. doi: 10.1016/j.nimb.2005.04.117

    [11] 魏德强, 李新凯, 任旭隆. 电子束表面改性研究进展[J]. 热加工工艺, 2016, 45: 19 − 23.

    Wei Deqiang, Li Xinkai, Ren Xulong. Research progress on surface modification of electron beam[J]. Hot Working Technology, 2016, 45: 19 − 23.

    [12] 李玉海, 肖福仁, 王玉辉, 等. 强流脉冲离子束辐照对M2高速钢的表面改性[J]. 材料研究学报, 2005, 19: 55 − 60.

    Li Yuhai, Xiao Furen, Wang Yuhui, et al. M2 high speed steel irradiated by high-intensity pulsed ion beam[J]. Chinese Journal of Materials Research, 2005, 19: 55 − 60.

    [13] 章为夷. 等温球化处理过程中球状碳化物的Ostwald长大现象[J]. 材料科学与工艺, 1993, 1: 44 − 48.

    Zhang Weiyi. Ostwald Repening of spherical carbide during isothermal spheroidizing[J]. Material Science & Technology, 1993, 1: 44 − 48.

    [14]

    Zhang Li, Chen Shu, Wang Yuan jie, et al. Tungsten carbide platelet-containing cemented carbide with yttrium containing dispersed phase[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(1): 104 − 108. doi: 10.1016/S1003-6326(08)60019-9

    [15]

    Wang H, Hou L, Zhang J, et al. The secondary precipitates of niobium-alloyed M3: 2 high speed steel prepared by spray deposition[J]. Mater Charact, 2015, 106: 245 − 254. doi: 10.1016/j.matchar.2015.06.006

    [16]

    Qu M, Wang Z, Li H, et al. Effects of mischmetal addition on phase transformation and as-cast microstructure characteristics of M2 high-speed steel[J]. J Rare Earth, 2013, 31: 628 − 633. doi: 10.1016/S1002-0721(12)60332-9

    [17]

    Chen G, Yin Q, Zhang G, et al. Underlying causes of strength weakening of electron beam welded joints of high-speed steels[J]. J Manuf Process, 2019, 39: 250 − 258. doi: 10.1016/j.jmapro.2019.01.047

  • 期刊类型引用(4)

    1. 杨康,艾新港,王志英,臧喜民,施文杰,王晓峰. 耐磨钢的发展与耐磨性强化. 辽宁科技大学学报. 2024(03): 174-184 . 百度学术
    2. 尹中会,曹志森,杨建军,马建国,刘振飞. TU1无氧铜/316L不锈钢电子束焊接接头组织与性能. 黑龙江工业学院学报(综合版). 2023(05): 114-119 . 百度学术
    3. 冯道臣,郑文健,高国奔,周州,贺艳明,杨建国. AlCoCrFeNi_(2.1)高熵合金电子束焊接接头耐蚀性. 机械制造文摘(焊接分册). 2023(04): 8-14 . 百度学术
    4. 冯道臣,郑文健,高国奔,周州,贺艳明,杨建国. AlCoCrFeNi_(2.1)高熵合金电子束焊接接头耐蚀性. 焊接学报. 2022(05): 43-48+116 . 本站查看

    其他类型引用(1)

图(10)  /  表(2)
计量
  • 文章访问数:  429
  • HTML全文浏览量:  40
  • PDF下载量:  46
  • 被引次数: 5
出版历程
  • 收稿日期:  2021-04-12
  • 网络出版日期:  2021-12-22
  • 刊出日期:  2021-12-24

目录

    /

    返回文章
    返回