高级检索

新型双脉冲MIG焊接电源

钟启明, 谢芳祥, 王振民

钟启明, 谢芳祥, 王振民. 新型双脉冲MIG焊接电源[J]. 焊接学报, 2019, 40(7): 94-99. DOI: 10.12073/j.hjxb.2019400188
引用本文: 钟启明, 谢芳祥, 王振民. 新型双脉冲MIG焊接电源[J]. 焊接学报, 2019, 40(7): 94-99. DOI: 10.12073/j.hjxb.2019400188
ZHONG Qiming, XIE Fangxiang, WANG Zhenmin. Research of a novel double-pulsed MIG welding power supply[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 94-99. DOI: 10.12073/j.hjxb.2019400188
Citation: ZHONG Qiming, XIE Fangxiang, WANG Zhenmin. Research of a novel double-pulsed MIG welding power supply[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2019, 40(7): 94-99. DOI: 10.12073/j.hjxb.2019400188

新型双脉冲MIG焊接电源

基金项目: 国家自然科学基金项目(E51875212);广东省科技计划项目(2016B090927008,201807010035,2018A030313192)

Research of a novel double-pulsed MIG welding power supply

  • 摘要: 为提升双脉冲MIG焊接设备的整体性能,研制了一台基于全碳化硅功率器件的双脉冲MIG逆变焊接电源,逆变频率可达100 kHz,有利于实现电弧的精细化控制.以STM32F405RGT6为控制核心,搭建了逆变焊机的控制系统硬件电路,其由主控制电路、数字面板以及送丝控制电路等构成.根据双脉冲MIG焊的任务需求设计了相应的控制软件,采用增量式PID算法控制输出量,通过单脉冲输出+脉动送丝控制,实现双脉冲焊接.结果表明,所研制的逆变焊接电源具有快速的动态响应,能有效配合脉动送丝进行焊接,焊缝鱼鳞纹清晰,无明显缺陷.
    Abstract: In order to improve the overall performance of double-pulsed MIG welding equipment, a novel welding power is developed based on silicon carbide power devices. The inverting frequency is up to 100 kHz, which is beneficial to precisely control welding arc. Control circuit of the proposed welding power is composed of the main control circuit, a digital panel, wire feeder control circuit, in which STM32F405RGT6 is the control core. A corresponding control software is designed according to double-pulsed MIG welding task requirements. The incremental PID algorithm is used to control the output and double-pulsed welding is realized by single pulse output with pulsating wire feeding. Test result shows that the proposed welding power supply has a fast-dynamic response, which can effectively cooperate with the pulsating wire feeding to weld. The fish scales of the weld are clear without obvious defects.
  • [1] 马德.数字控制铝合金双脉冲MIG焊工艺的研究[D].北京:北京工业大学, 2004.
    [2] Hazra S, De A, Cheng L, et al. High switching performance of 1700-V, 50-A SiC power MOSFET over Si IGBT/BiMOSFET for advanced power conversion applications[J]. IEEE Transactions on Power Electronics, 2016, 31(7):4742-4754.
    [3] Wang G, Mookken J, Rice J, et al. Dynamic and static behavior of packaged silicon carbide MOSFETs in paralleled applications[C]//Applied Power Electronics Conference, 2014:1478-1483.
    [4] 王振民,汪倩,王鹏飞,等.新一代WBG弧焊逆变电源[J].焊接学报, 2016, 37(7):49-52 Wang Zhenmin, Wang Qian, Wang Pengfei, et al. A new generation WBG arc welding inverter[J]. Transactions of the China Welding Institution, 2016, 37(7):49-52
    [5] 沙德尚,廖晓钟.双脉冲MIG/MAG焊全数字控制策略[J].北京理工大学学报, 2009, 29(7):605-607 Sha Deshang, Liao Xiaozhong. Full digital control strategy of double pulsed MIG/MAG welding[J]. Transactions of Beijing Institute of Technology, 2009, 29(7):605-607
    [6] 钱金川,朱守敏.全桥式逆变电源主电路设计[J].电工电气, 2010(04):12-19 Qian Jinchuan, Zhu Shoumin. Main circuit design of full-bridge reverse converter power supply[J]. Electrotechnics Electric, 2010(04):12-19
    [7] Hazra S, Madhusoodhanan S, Moghaddam G, et al. Design considerations and performance evaluation of 1200 V, 100 A SiC MOSFET based converter for high power density application[J]. IEEE Transactions on Industry Applications, 2013, 52(5):4527-4268.
    [8] Rice J, Mookken J. SiC MOSFET gate drive design considerations[C]//IEEE International Workshop on Integrated Power Packaging. IEEE, 2015:24-27.
    [9] 王振民,张福彪,王鹏飞,等.全数字机器人VPPA焊接电源[J].焊接学报, 2017, 38(7):5-8,30 Wang Zhenmin, Zhang Fubiao, Wang Pengfei, et al. Research on full digital robot VPPA welding power supply[J]. Transactions of the China Welding Institution, 2017, 38(7):5-8,30
    [10] 邓方雄,钟继光,石永华,等.水下焊接脉动送丝机构的研制[J].电焊机, 2006, 36(7):13-15 Deng Fangxiong, Zhong Jiguang, Shi Yonghua, et al. Study on the pulsed feeding wire system for underwater welding[J]. Electric Welding Machine, 2006, 36(7):13-15
    [11] 吴强,韩震宇,李程.基于增量式PID算法的无刷直流电机PWM调速研究[J].机电工程技术, 2013, 42(3):63-65 Wu Qiang, Han Zhenyu, Li Cheng. Based on the incremental PID algorithm for brushless DC motor PWM speed control research[J]. Mechanical&Electrical Engineering Technology, 2013, 42(3):63-65
  • 期刊类型引用(11)

    1. 郑建超,李锋,谢洪志,关峰,赵兴旺. TC4钛合金激光点焊工艺研究. 金属加工(热加工). 2025(02): 57-63 . 百度学术
    2. 马雪芳,张明玉,陈雅娟. 退火温度对TC11钛合金组织与拉伸性能的影响. 轨道交通材料. 2025(01): 32-35 . 百度学术
    3. 李明明,陈志旋,唐敏,王璐. 固体发动机增材制造技术研究进展及应用展望. 航天制造技术. 2025(01): 26-32 . 百度学术
    4. 张万鹏,张明玉,解炜. 不同状态TC6钛合金的显微组织和拉伸性能. 热处理. 2025(02): 24-26+37 . 百度学术
    5. 高芳兰,张明玉,杨娜. 不同固溶时效工艺对TA10钛合金微观组织与拉伸性能的影响. 特钢技术. 2024(02): 8-11 . 百度学术
    6. 张明玉,白鑫洁,陈雅娟. 退火态TC6钛合金微观组织与拉伸性能的研究. 山东工业技术. 2024(04): 10-14 . 百度学术
    7. 张群兵,张阔,于佳恩,李帆,吕泉霖,行海波,孙康,张建勋. TC17/Ti60异种钛合金激光焊接接头微观组织和低周疲劳性能研究. 钛工业进展. 2024(04): 23-29 . 百度学术
    8. 吴宝生,李鹏,马月婷,董红刚. VCrAl_(1.21)Ni_(0.93)Co_(1.85)高熵合金中间层真空扩散连接TC4钛合金和T2铜. 焊接学报. 2024(09): 1-13 . 本站查看
    9. 吴小翠,刘建,刘长军,杨宗瑞. 激光深熔焊接工作流体流动和传热研究综述. 机电工程技术. 2024(09): 60-64 . 百度学术
    10. 王磊,葛佳惺,王韬磊,冯盛洲,高天锡. 增材制造金属材料的焊接性能研究进展. 苏州科技大学学报(工程技术版). 2024(04): 10-16 . 百度学术
    11. 汤洛天,刘奋成,尤启凡,江五贵,刘丰刚,余小斌,张传奎,曾宙. 不同杆间夹角激光选区熔化增材成形点阵结构压缩性能研究. 中国激光. 2024(24): 172-182 . 百度学术

    其他类型引用(1)

计量
  • 文章访问数:  427
  • HTML全文浏览量:  15
  • PDF下载量:  186
  • 被引次数: 12
出版历程
  • 收稿日期:  2018-08-21

目录

    /

    返回文章
    返回