高级检索

胶层-镍箔辅助激光焊钢/镁接头组织与性能

李会明, 周惦武, 王新宇, 贺赵国, 刘金水

李会明, 周惦武, 王新宇, 贺赵国, 刘金水. 胶层-镍箔辅助激光焊钢/镁接头组织与性能[J]. 焊接学报.
引用本文: 李会明, 周惦武, 王新宇, 贺赵国, 刘金水. 胶层-镍箔辅助激光焊钢/镁接头组织与性能[J]. 焊接学报.

胶层-镍箔辅助激光焊钢/镁接头组织与性能

基金项目: 国家自然科学基金资助项目(51774125, 52174360);湖南省自然科学基金资助项目(2020JJ4207).
详细信息
    作者简介:

    李会明,硕士研究生;主要研究方向为钢/镁异种金属焊接;Email:Lhmlxy20200202@163.com

    通讯作者:

    周惦武,博士,教授;Email: ZDWe_mail@hnu.edu.cn.

  • 中图分类号: TG 460

  • 摘要: 采用钢板在上、镁板在下且添加胶层-镍箔辅助的激光焊接技术,对厚度1.5 mm的DP590双相钢和厚度1.4 mm的AZ31B镁合金进行焊接, 基于热力学计算选择添加箔片元素,分析接头焊缝形貌、显微组织与力学性能,并对接头熔池温度场和流场进行数值模拟. 结果表明,激光功率1 800 W,焊接速度30 mm/s,离焦量为 + 2 mm,流量为15 L/min的氩气保护的工艺条件下,添加镍箔实现了镁/钢冶金连接,同时添加胶层和镍箔,与单一添加镍箔相比,接头平均抗剪强度提高1.73倍;添加胶层,焊缝连续光滑, 镁侧熔池的熔化宽度增大,钢/镁横向结合面积增加,界面处横向和纵向的温度梯度降低,熔池流动速度提高,元素分布的均匀性得到改善,促进了界面元素相互扩散和冶金反应,因此钢/镁接头性能得到大幅提升.
  • 图  1   钢/镁添加镍箔焊

    Figure  1.   Steel/Mg with Ni foil welding

    图  2   钢/镁添加镍和胶层焊接

    Figure  2.   Steel/Mg with Ni and glue layer welding

    图  3   钢/镁接头焊缝形貌

    Figure  3.   Shape of weld seam in steel/magnesium joint. (a) adding nickel foil; (b) adding nickel foil and glue layer

    图  4   钢/镁接头显微硬度

    Figure  4.   Microhardness of steel/magnesium joints

    图  5   钢/镁添加镍箔微观组织

    Figure  5.   Microstructure of steel/Mg added Ni foil. (a) overall organization of the joint with the addition of nickel foil; (b) partial enlargement of A area; (c) partial enlargement of B area

    图  6   钢/镁添加镍箔和胶层微观组织

    Figure  6.   Microstructure of steel/Mg added Ni foil and glue layer. (a) overall organization of the joint with the addition of a nickel foil glue layer; (b) partial enlargement of C area; (c) partial enlargement of D area

    图  7   钢/镁添加镍箔和同时添加镍箔和胶层元素分布

    Figure  7.   Distribution of elements in steel/Mg with Ni foil and with both Ni foil and glue layer. (a) addition of nickel foil element distribution; (b) addition of nickel foil and glue layer element distribution

    图  8   镁侧熔池横截面SEM图

    Figure  8.   Cross-sectional SEM image of magnesium side melt pool. (a) adding nickel foil; (b) adding nickel foil and glue layer

    图  9   二元焓变计算结果

    Figure  9.   Binary enthalpy change calculation results

    图  10   热力学计算结果

    Figure  10.   Thermodynamic calculation results. (a) Standard molar generation enthalpy for binary systems; (b) chemical potentials of Fe-Ni-Mg-0.03Al system for Fe; (c) chemical potentials of Fe-Ni-Mg-0.03Al system for Mg ; (d) chemical potentials of Fe-Ni-Mg-0.03Al system for Al; (e) chemical potential of Al in the Fe-Ni-Al-0.03Mg system; (f) free energy of the Fe-Ni-Al-0.03Mg system

    图  11   焊接接头线扫描结果

    Figure  11.   Welded joint line scan results. (a) scanning direction; (b) scanning results

    图  12   温度场模拟等值面图

    Figure  12.   Equivalent surface diagram of temperature field simulation. (a) adding nickel foil; (b) adding nickel foil and glue layer

    图  13   温度场模拟热循环结果

    Figure  13.   Temperature field simulation of thermal cycling results. (a) adding nickel foil; (b) adding nickel foil and glue layer

    图  14   速度场模拟结果

    Figure  14.   Velocity field simulation results. (a) adding nickel foil; (b) adding nickel foil and glue layer

    表  1   母材化学成分(质量分数,%)

    Table  1   Chemical composition of base material

    材料AlZnMnSiCSPFeMg
    DP5900.021.600.04460.0680.0150.011Bal
    AZ31B3.120.950.150.100.03余量
    下载: 导出CSV

    表  2   焊接工艺参数

    Table  2   Welding parameters

    激光功率P/W离焦量L/mm焊接速度v/(mm·s−1)氩气的流速Q/(L·min−1)
    1 800 + 23015
    下载: 导出CSV

    表  3   EDS点成分分析结果(原子分数,%)

    Table  3   Results of EDS point composition analysis

    位置FeNiAlMg可能相
    P10.933.251.4294.40α-Mg
    P278.0918.830.132.95Fe + FeNi3
    P30.450.081.4198.06α-Mg
    P40.446.501.6591.41α-Mg
    P52.199.371.8886.56α-Mg + Mg2Ni
    P60.944.331.2691.71α-Mg
    P70.744.091.2192.59α-Mg + Mg2Ni
    P856.4211.312.4925.91Mg2Ni + FeNi3
    下载: 导出CSV

    表  4   热力学计算过程中使用的元素参数

    Table  4   Elemental parameters used in the thermodynamic calculation process

    元素熔点${ {{T} }_{\text{m} } }{\text{/K} }$电子密度${{n}}_{{\text{WS}}}^{{\text{1/3}}}{\text{/d}}{\text{.u}}{\text{.}}$电负性$\varphi {\text{/V}}$经验常数$\mu$摩尔分数${ {{V} }^{ {\text{2/3} } } }{\text{/c} }{ {\text{m} }^{\text{3} } }$经验常数$R/P$
    Ni1 726.151.755.200.043.521.0
    Mg921.151.173.450.15.810.4
    Fe1 811.151.774.930.043.691.0
    Ti1 933.151.523.800.044.821.0
    Cu1 356.151.474.450.043.700.3
    下载: 导出CSV

    表  5   1 300 K不同Al原子含量四元体系的吉布斯自由能

    Table  5   Gibbs free energy of quaternary systems with different Al content at 1 300 K

    NiAlFe吉布斯自由能Gm/(kJ·mol−1)
    0.539 0.001 0.43 −91.934
    0.101 0.33 −98.269
    0.588 0.102 0.28 −98.293
    0.152 0.23 −100.579
    0.639 0.251 0.08 −103.657
    0.301 0.03 −104.547
    下载: 导出CSV
  • [1]

    Mansoor B, Mukherjee S, Ghosh A. Microstructure and porosity in thixomolded Mg alloys and minimizing adverse effects on formability[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2009, 512(1-2): 10 − 18.

    [2]

    Tao T, Liu J S, Zhou D W, et al. Microstructure and mechanical properties of laser welding of AZ31B magnesium alloy and DP590 dual-phase steel with concave groove joint[J]. Journal of Manufacturing Processes, 2021, 72: 227 − 239. doi: 10.1016/j.jmapro.2021.10.024

    [3]

    Liu L M, Wang S X, Zhao L M. Study on the dissimilar magnesium alloy and copper lap joint by TIG welding[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2008, 476(1-2): 206 − 209.

    [4]

    Tao T, Zhou D W, Liu J S, et al. Improvement of laser welded joint properties of AZ31B magnesium alloy to DP590 dual-phase steel produced by external magnetic field[J]. Journal of Manufacturing Processes, 2022, 79: 270 − 283. doi: 10.1016/j.jmapro.2022.04.069

    [5]

    Patel V K, Bhole S D, Chen D L. Characterization of ultrasonic spot welded joints of Mg-to-galvanized and ungalvanized steel with a tin interlayer[J]. Journal of Materials Processing Technology, 2014, 214(4): 811 − 817.

    [6] 李永兵, 马运五, 楼铭, 等. 轻量化多材料汽车车身连接技术进展[J]. 机械工程学报, 2016, 52(24): 1 − 23. doi: 10.3901/JME.2016.24.001

    Li Yongbing, Ma Yunwu, Lou Ming, et al. Advances in lightweight multi-material automotive body joining technology[J]. Journal of Mechanical Engineering, 2016, 52(24): 1 − 23. doi: 10.3901/JME.2016.24.001

    [7]

    Tan C W, Chen B, Song X G, et al. Influence of Al Interlayer Thickness on Laser Welding of Mg/Steel[J]. Welding Journal, 2016, 95(10): 384 − 394.

    [8]

    Liu L M, Qi X D. Effects of copper addition on microstructure and strength of the hybrid laser-TIG welded joints between magnesium alloy and mild steel[J]. Journal of Materials Science, 2009, 44(21): 5725 − 5731.

    [9]

    Song G, Li T T, Zhang Z D, et al. Investigation of unequal thickness Mg/steel butt-welded plate by hybrid laser-tungsten inert gas welding with a Ni interlayer[J]. Journal of Manufacturing Processes, 2017, 30: 299 − 302. doi: 10.1016/j.jmapro.2017.09.019

    [10]

    Cao R, Chang J H, Huang Q, et al. Behaviors and effects of Zn coating on welding-brazing process of Al-Steel and Mg-steel dissimilar metals[J]. Journal of Manufacturing Processes, 2018, 31: 674 − 688. doi: 10.1016/j.jmapro.2018.01.001

    [11] 蒋健博. 胶粘剂对镁/铝异种合金胶焊的影响及其机制研究[D]. 大连: 大连理工大学, 2011.

    Jiang Jianbo. Effect of adhesives on the glue welding of Mg/Al heteralloys and its mechanism[D]. Dalian: Dalian University of Technology, 2011.

    [12]

    Wang H Y, Liu L M, Zhu M L, et al. Laser weld bonding of A6061Al alloy to AZ31B Mg alloy[J]. Science and Technology of Welding and Joining, 2007, 12(3): 261 − 265. doi: 10.1179/174329307X159784

    [13] 任大鑫, 刘黎明. 镁合金激光胶接焊胶层作用分析[J]. 机械工程学报, 2009, 45(8): 266 − 269. doi: 10.3901/JME.2009.08.266

    Ren Daxin, Liu Liming. Analysis of the role of laser bonding welding adhesive layer for magnesium alloy[J]. Journal of Mechanical Engineering, 2009, 45(8): 266 − 269. doi: 10.3901/JME.2009.08.266

    [14]

    Ren D X, Liu L M, Li Y F. Investigation on overlap joining of AZ61 magnesium alloy: laser welding, adhesive bonding, and laser weld bonding[J]. International Journal of Advanced Manufacturing Technology, 2012, 61(1-4): 195 − 204. doi: 10.1007/s00170-011-3683-x

    [15] 王红阳, 张兆栋, 曹贺. 基于镍合金中间层的镁/钢异质金属激光-电弧复合胶焊技术[J]. 焊接学报, 2014, 35(4): 83 − 86.

    Wang Hongyang, Zhang Zhaodong, Cao He. Laser-arc composite glue welding technology for magnesium/steel heterogeneous metals based on nickel alloy interlayer[J]. Transactions of the China Welding Institution, 2014, 35(4): 83 − 86.

    [16]

    Liu L M, Jiang J B. The effect of adhesive on arc behaviors of laser-TIG hybrid weld bonding process of Mg to Al alloy[J]. Ieee Transactions on Plasma Science, 2011, 39(12): 581 − 586.

    [17] 周惦武, 李宁宁, 徐少华, 等. 双相钢/铝合金激光胶接焊胶层作用分析[J]. 机械工程学报, 2016, 52(14): 25 − 30.

    Zhou Dianwu, Li Ningning, Xu Shaohua, et al. Analysis of the role of laser glue layer for duplex/aluminum alloy welding[J]. Journal of Mechanical Engineering, 2016, 52(14): 25 − 30.

    [18] 刘黎明, 王红阳, 王恒, 等. 镁合金激光胶接焊接头微观及力学性能[J]. 中国机械工程, 2007(3): 352 − 356. doi: 10.3321/j.issn:1004-132X.2007.03.025

    Liu Liming, Wang Hongyang, Wang Heng, et al. Microscopic and mechanical properties of laser-glued welded joints of magnesium alloy[J]. China Mechanical Engineering, 2007(3): 352 − 356. doi: 10.3321/j.issn:1004-132X.2007.03.025

    [19]

    Miedema A R. The electronegativity parameter for transition metals: Heat of formation and charge transfer in alloys[J]. Journal of the Less Common Metals, 1973, 32(1): 117 − 136.

    [20]

    Luo Q, Li Q, Zhang J Y, et al. Comparison of muggianu model, toop model and general solution model for predicting the thermodynamic properties of Mg-Al-Zn system[J]. Calphad, 2015, 51: 366.

    [21]

    Auwal S T, Ramesh S, Zhang Z Q, et al. Influence of electrodeposited Cu-Ni layer on interfacial reaction and mechanical properties of laser welded-brazed Mg/Ti lap joints[J]. Journal of Manufacturing Processes, 2019, 37: 251 − 265.

    [22]

    Li T, Zhou D W, Yan Y R L, et al. Effect of laser-Ti foil coupling on microstructure and mechanical property of steel/aluminum fusion welding joints[J]. Optics and Laser Technology, 2021, 141: 107114.

    [23] 康悦, 赵艳秋, 李悦, 等. 驱动力对2219铝合金DLBSW焊接熔池行为的影响[J]. 焊接学报, 2022, 43(2): 82 − 87.

    Kang Yue, Zhao Yanqiu, Li Yue, et al. Effect of driving force on the molten pool behavior of 2219 aluminum alloy DLBSW welds[J]. Transactions of the China Welding Institution, 2022, 43(2): 82 − 87.

    [24]

    Qi J X, Miao G H, Ai J Y, et al. Study on numerical simulation of TA1-304 stainless steel explosive welding[J]. China Welding, 2021, 30(02): 11 − 16.

图(14)  /  表(5)
计量
  • 文章访问数:  293
  • HTML全文浏览量:  96
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 网络出版日期:  2022-08-02

目录

    /

    返回文章
    返回