高级检索

多孔化高熵合金改善Al-Si合金/钢体系润湿铺展性能机理

郑敏, 杨瑾, 赵一璇, 徐文虎, 檀财旺, 张华

郑敏, 杨瑾, 赵一璇, 徐文虎, 檀财旺, 张华. 多孔化高熵合金改善Al-Si合金/钢体系润湿铺展性能机理[J]. 焊接学报.
引用本文: 郑敏, 杨瑾, 赵一璇, 徐文虎, 檀财旺, 张华. 多孔化高熵合金改善Al-Si合金/钢体系润湿铺展性能机理[J]. 焊接学报.

多孔化高熵合金改善Al-Si合金/钢体系润湿铺展性能机理

基金项目: 国家自然科学基金(51805315);中国博士后科学基金(2021M691342).
详细信息
    作者简介:

    郑敏,博士研究生;主要研究方向为异质金属焊接、多孔金属材料制备及应用;Email: 503179309@qq.com

    通讯作者:

    杨瑾,博士,副教授;Email: jyang@sues.edu.cn.

  • 中图分类号: TG 454

  • 摘要: 借助电极感应熔化气雾化法,制备了 FeCoNiCrMn高熵合金粉末;通过真空烧结技术,在钢表面制备了具有不同孔隙率和孔径的多孔高熵合金涂层. 研究了不同烧结工艺参数对多孔涂层孔隙率、孔径以及过渡层厚度的影响. 开展了Al-12Si合金在多孔高熵涂层钢表面的原位润湿铺展试验,探讨了多孔高熵合金涂层对表观接触角和铺展行为的影响规律,深入分析了多孔高熵结构内反应产物的显微组织和相组成. 结果表明,随着烧结温度的升高和保温时间的延长,多孔高熵合金涂层的过渡层厚度逐渐升高,孔隙率及平均孔径逐渐减少. 液态Al-12Si合金液滴在多孔涂层中微通道增强的毛细力作用下,迅速浸润到多孔结构中,并实现了材料表面的完全润湿. 在高熵合金的迟滞扩散效应与高熵效应共同作用下, 界面反应层中金属间化合物的形成受到显著阻碍,界面相结构由富Cr的FCC、富AlFe的BCC以及富AlNi的B2 + 富Al的BCC共晶状结构组成.
  • 图  1   烧结工艺原理及烧结工艺参数曲线

    Figure  1.   Sintering process principle and sintering process parameters curve. (a) vacuum sintering process flow diagram; (b) sintering process curve diagram

    图  2   高熵合金粉末表征

    Figure  2.   Characterization of high entropy alloy powder. (a) SEM morphology of high entropy alloy powder; (b) XRD; (c) DSC

    图  3   不同烧结温度的多孔高熵涂层SEM照片及截面OM照片

    Figure  3.   SEM pictures and cross-sectional OM pictures of porous high-entropy coatings at different sintering temperatures. (a) 1 000 ℃; (b) 1 100 ℃; (c) 1 200 ℃

    图  4   不同保温时间的多孔高熵涂层SEM照片及截面OM照片

    Figure  4.   SEM pictures and cross-sectional OM pictures of porous high-entropy coatings with different holding times. (a) 1 h; (b) 2 h; (c) 3 h

    图  5   多孔高熵合金涂层钢的三维视图及XRD

    Figure  5.   Three-dimensional view and XRD of porous high-entropy alloy coated steel. (a) three-dimensional view; (b) XRD

    图  6   不同烧结工艺参数下多孔高熵合金涂层孔隙率及平均孔径的变化

    Figure  6.   Changes of porosity and average pore size of porous high-entropy alloy coatings under different sintering process parameters. (a) change the sintering temperature; (b) change the holding time

    图  7   不同烧结工艺参数下高熵合金涂层/钢基材界面OM照片

    Figure  7.   OM photos of the high-entropy alloy coating/steel substrate interface under different sintering process parameters. (a) holding time 3 h; (b) hintering temperature 1 200 ℃

    图  8   多孔高熵合金涂层界面SEM、EDS及纳米硬度分析

    Figure  8.   SEM, EDS and nano-hardness analysis of porous high-entropy alloy coating interfaces. (a) Interface SEM and EDS elemental mapping; (b) SEM photo of nano-hardness indentation in zone B; (c) Nano-hardness profile graph

    图  9   Al-12Si合金/多孔涂层钢的SEM照片

    Figure  9.   SEM photo of Al-12Si alloy/porous coated steel. (a) top view; (b) cross-sectional view

    图  10   Al-12Si合金/多孔涂层钢界面区域的SEM图像和EDS元素图谱

    Figure  10.   SEM images and EDS elemental mapping of the interfacial region of Al-12Si alloy/porous coated steel

    图  11   Al-12Si合金在多孔涂层钢以及其它类型钢表面的接触角对比

    Figure  11.   Comparison of contact angles of Al-12Si alloy on porous coated steel as well as on other types of steel surfaces. (a) variation of apparent contact angle and contact radius with time; (b) apparent contact angle comparison histogram

    图  12   Al-12Si合金/多孔涂层钢的界面SEM照片及EDS元素扫描图

    Figure  12.   SEM photograph and EDS elemental map of the interface of Al-12Si alloy/porous coated steel

    图  13   Al-12Si合金/多孔涂层钢界面的TEM,HR-TEM以及SADPs分析

    Figure  13.   TEM, HR-TEM and SADPs analysis of the Al-12Si alloy/porous coated steel interface. (a) zone I; (b) zone II; (c) zone III; (d) zone IV

    表  1   不同烧结工艺参数下的多孔涂层EDS点分析(原子分数,%)

    Table  1   Analysis of EDS points of porous coatings for different sintering process parameters

    温度T/℃时间t/hFeCoCrNiMn
    1 000320.6820.0520.4919.6518.41
    1 100327.7526.6723.3922.39_
    1 200328.7825.6721.6123.94_
    1 200228.0826.3722.1023.45_
    1 200127.7326.7223.4122.14_
    下载: 导出CSV

    表  2   不同烧结工艺参数下界面过渡层厚度

    Table  2   Interfacial transition layer thickness for different sintering process parameters

    温度T/℃时间t/h过渡层厚度d/μm
    1 00031.9
    1 10035.4
    1 20037.6
    1 20027.4
    1 20016.3
    下载: 导出CSV

    表  3   图12中I-IV区的EDS点分析(原子分数,%)

    Table  3   EDS analysis at the points of the I-IV region in Fig12

    位置AlSiFeCrCoNi可能相
    I1.882.0433.7650.916.454.46富Cr-FCC
    II31.264.6129.576.4513.8314.29富AlFe-BCC
    III60.572.989.278.739.528.73富Al-BCC
    IV26.722.3214.672.8215.2838.24富AlNi- B2
    下载: 导出CSV
  • [1]

    Tan C W, Yang J, Zhao X Y, et al. Influence of Ni coating on interfacial reactions and mechanical properties in laser welding-brazing of Mg/Ti butt joint[J]. Journal of Alloys and Compounds, 2018, 764: 186 − 201. doi: 10.1016/j.jallcom.2018.06.039

    [2] 张知航, 杨建, 杨震, 等. Cu基板粗糙度对SnAgCu无钎料润湿性的影响[J]. 焊接学报, 2022, 43(1): 22 − 28.

    Zhang Zhihang, Yang Jian, Yang Zhen, et al. Influence of Cu substrate roughness on wettability of SnAgCu lead-free solder[J]. Transactions of the China Welding Institution, 2022, 43(1): 22 − 28.

    [3]

    Tzaneva B R, Dobreva E D, Koteva N B, et al. Effect of etching conditions on electroless Ni-P plating of 3D printed polylactic acid[J]. Transactions of the IMF, 2022, 100(3): 166 − 172. doi: 10.1080/00202967.2022.2060555

    [4]

    Cheng C T, To S, Zhang G Q, et al. Characterization of intermediate wetting states on micro-grooves by water droplet contact line[J]. Journal of Industrial and Engineering Chemistry, 2020, 91(25): 69 − 78.

    [5]

    Li H Y, Li L Q, Huang R R, et al. The effect of surface texturing on the laser-induced wetting behavior of AlSi5 alloy on Ti6Al4V alloy[J]. Appliced Surface Science, 2021, 566(15): 150630.

    [6]

    Zhang G D, Zhu Q, Yang H B, et al. Effect of surface treatment on the laser welding performance of dissimilar materials[J]. Journal of Manufacturing Processes, 2022, 74: 465 − 473. doi: 10.1016/j.jmapro.2021.12.044

    [7]

    Davis S H, Hocking L M. Spreading and imbibition of viscous liquid on a porous base[J]. Physics of Fluids, 1999, 11(1): 48 − 57. doi: 10.1063/1.869901

    [8]

    Gambaryan-Roisman T. Liquids on porous layers: wetting, imbibition and transport processes[J]. Current Opinion in Colloid & Interface Science, 2014, 19: 320 − 335.

    [9]

    Tan C W, Su J H, Fang Z W, et al. Laser joining of CFRTP to titanium alloy via laser surface texturing[J]. Chinese Journal of Aeronautics, 2021, 34(5): 103 − 114. doi: 10.1016/j.cja.2020.08.017

    [10]

    Sun J, Chen Z Z, Song J L, et al. A universal method to create surface patterns with extreme wettability on metal substrates[J]. Journal of Colloid and Interface Science, 2019, 535(1): 100 − 110.

    [11]

    Liu Z Y, Yang J, Li Y L, et al. Wetting and spreading behaviors of Al -Si alloy on surface textured stainless steel by ultrafast laser[J]. Applied Surface Science, 2020, 520: 146316. doi: 10.1016/j.apsusc.2020.146316

    [12]

    Yang J, Oliveira J P, Li Y L, et al. Laser techniques for dissimilar joining of aluminum alloys to steels: A critical reviewr[J]. Journal of Materials Processing Technology, 2022, 301: 117443. doi: 10.1016/j.jmatprotec.2021.117443

    [13]

    Li H Y, Xu W H, Li L Q, et al. Enhancing the wettability for 4043 aluminum alloy on 301L stainless steel via chemical-etched surface texturing[J]. Journal of Materials Processing Technology, 2022, 305: 117577. doi: 10.1016/j.jmatprotec.2022.117577

    [14]

    Lai Q Q, Zhang L, Chen C, Shang J K. Tunable Reactive Wetting of Sn on Microporous Cu Layer[J]. Journal of Materials Science & Technology, 2012, 28(4): 379 − 384.

    [15]

    Zheng M, Zhang H, Gao Y, et al. Influence of porous high entropy alloy coating on wetting behavior and interfacial microstructure of Al-Si alloy on steel substrate[J]. Journal of Alloys and Compounds, 2022, 912: 165154. doi: 10.1016/j.jallcom.2022.165154

    [16] 刘联宝. 电真空器件的钎焊与陶瓷-金属封接[M]. 北京: 国防工业出版社, 1978.

    Liu Lianbao. Brazing and ceramic-metal sealing of electric vacuum devices[M]. Beijing: National Defense Industry Press, 1978.

    [17]

    Yeh J W. Recent progress in high-entropy alloys[J]. European Journal of Control, 2016, 31: 633 − 648.

    [18] 潘龙. Cr在FeCr合金中扩散过程的原子尺度模拟研究[D]. 南京: 南京理工大学, 2015.

    Pan Long. Atomic simulations of the diffusion process of Cr in Fe-Cr alloy[D]. Nangjing: Nanjing University of Science And Technology, 2015.

    [19] 文成, 莫湾湾, 田玉琬, 等. 高熵合金固溶强化问题的研究进展[J]. 材料导报, 2021, 35(17): 17081 − 17089. doi: 10.11896/cldb.20070084

    Weng Cheng, Mo Wanwan, Tian Yuwan, et al. Research progress on solid solution strengthening of high entropy alloys[J]. Materials Reports, 2021, 35(17): 17081 − 17089. doi: 10.11896/cldb.20070084

    [20]

    Starov V M, Zhdanov S A, Kosvintsev S R, et al. Velarde, spreading of liquid drops over porous substrates[J]. Advances in Colloid and Interface Science, 2003, 104: 123 − 158. doi: 10.1016/S0001-8686(03)00039-3

    [21]

    Gatzen M, Radel T, Thomy C, et al. Wetting behavior of eutectic Al–Si droplets on zinc coated steel substrates[J]. Journal of Materials Processing Technology, 2014, 214(1): 123 − 131. doi: 10.1016/j.jmatprotec.2013.08.005

    [22]

    Tsai M H, Yeh J W. High-entropy alloys: a critical review[J]. Materials Research Letters, 2014, 2(3): 107 − 123. doi: 10.1080/21663831.2014.912690

    [23]

    Xu H T, Shi L, Lu C Y, et al. A novel joining of C f /C composites using AlCoCrFeNi 2.1 high-entropy brazing filler alloys[J]. Materials Characterization, 2021, 179: 111368. doi: 10.1016/j.matchar.2021.111368

    [24]

    Guo W, Cai Y. Effect of laser remelting on microstructure and mechanical properties of CrMnFeCoCrNi high entropy alloy[J]. China Welding, 2021, 30(2): 1 − 10.

    [25] 唐顺利, 罗永春, 张国庆, 等. 高熵合金FeCrCoNiMn热浸铝熔体的界面结构及组织形成机制研究[J]. 材料导报, 2016, 30(10): 76 − 80.

    Tang Shunli, Luo Yongchun, Zhang Guoqing, et al. Interface structure and formation mechanism of FeCrCoNiMn high entroy alloy hot-dipping in molten aluminum[J]. Materials Reports, 2016, 30(10): 76 − 80.

    [26]

    Chen S H, YangD D, Zhang M X, et al. Interaction between the growth and dissolution of intermetallic compounds in the interfacial reaction between solid iron and liquid aluminum[J]. Metallurgical & Materials Transactions A, 2016, 47: 5088 − 5100.

    [27]

    Rong J J, Kang Z F, Chen S H, et al. Growth kinetics and thickness prediction of interfacial intermetallic compounds between solid steel and molten aluminum based on thermophysical simulation in a few seconds[J]. Materials Characterization, 2017, 132: 413 − 421. doi: 10.1016/j.matchar.2017.09.012

    [28]

    Lu Y P, Jiang H, Cao Z Q, et al. A new strategy to design eutectic high-entropy alloys using mixing enthalpy[J]. Intermetallics, 2017, 91: 124 − 128. doi: 10.1016/j.intermet.2017.09.001

图(13)  /  表(3)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 网络出版日期:  2022-07-27

目录

    /

    返回文章
    返回