高级检索

X波段GaAs功率芯片共晶焊热应力分析

纪宣, 禹胜林, 杨军, 王韩, 候林, 唐丽蓉

纪宣, 禹胜林, 杨军, 王韩, 候林, 唐丽蓉. X波段GaAs功率芯片共晶焊热应力分析[J]. 焊接学报, 2016, 37(12): 107-109.
引用本文: 纪宣, 禹胜林, 杨军, 王韩, 候林, 唐丽蓉. X波段GaAs功率芯片共晶焊热应力分析[J]. 焊接学报, 2016, 37(12): 107-109.
JI Xuan, YU Shenglin, YANG Jun, WANG Han, HOU Lin, TANG Lirong. Analysis of eutectic soldering thermal stressin X-Band GaAs power chip[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(12): 107-109.
Citation: JI Xuan, YU Shenglin, YANG Jun, WANG Han, HOU Lin, TANG Lirong. Analysis of eutectic soldering thermal stressin X-Band GaAs power chip[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(12): 107-109.

X波段GaAs功率芯片共晶焊热应力分析

Analysis of eutectic soldering thermal stressin X-Band GaAs power chip

  • 摘要: 随着电子封装集成度的不断提高,电子芯片的功率容量和发热量也越来越大,封装体内部温度分布不均以及产生的热应力影响芯片的可靠性.热沉作为电子设备主要的散热方式之一,被广泛使用.利用ANSYS有限元软件针对芯片-共晶层-热沉结构进行建模,通过有限元3D模型模拟该封装结构在热循环温度-55~125℃条件下产生的热应力情况,研究了采用不同热沉材料共晶焊的应力.结果表明,该结构封装的最大应力出现在热沉下表面的4个拐角处.钨铜为热沉结构时应力值最大,AlSi50次之,AlN最小.研究结果对X波段功率模块封装设计提供了设计依据.
    Abstract: With the increasing integration of electronic packaging, electronic chips power capacity and heat power is also growing, encapsulation body internal temperature distribution and thermal stress have the influence on the reliability of the chip. The heat sink is one of the major cooling methodfor electronic equipment. By using ANSYS finite element software, 3D finite element model was founded for chip-eutectic layer-heat sink tosimulate package thermal stressin -55~125℃ in the thermal cycling, and the eutectic welding stresswas studied at different heat sink materials. The results showed that the maximum stressin the encapsulation structure appears in the heat sink on the surface of the four corner. The heat sink materials with the thermal stress from high to low in order are tungsten copper, AlSi50 and AlN. The results of the study provide a design basis fordesignment of X-band power module package.
  • [1] Yeo S K, Chun J H, Kim K M, et al. An X-band high power amplifier module package using selectively anodized aluminum substrate[C]//Microwave Conference, European 2007:2007. 1357-1360.
    [2] Li L, Coccioli R, Nary K, et al. Multi-scale thermal analysis of GaAs RF device[C]//Semiconductor Thermal Measurement and Management Symposium, 2005 IEEE Twenty First Annual IEEEIEEE, 2005:259-263.
    [3] 蒋长顺, 谢扩军, 许海峰, 等. 封装中的界面热应力分析[J]. 电子与封装, 2006, 6(8):23-25. Jiang Changshun, Xie Kuojun, Xu Haifeng, et al. To encapsulate the interface thermal stress analysis[J]. Journal of Electronics and Encapsulation, 2006, 6(8):23-25.
    [4] 王金兰, 仝良玉, 刘培生, 等. 一种多芯片封装(MCP)的热仿真设计[J]. 计算机工程与科学, 2012, 34(4):28-31. Wang Jinlan, Tong Liangyu, Liu Peisheng, et al. More than a chip package (MCP) thermal simulation design[J]. Computer Engineering and Science, 2012, 34(4):28-31.
    [5] 陈忠, 张宪民. 不均匀背景下芯片焊接气泡的X射线检测[J]. 焊接学报, 2011, 32(10):65-68. Chen Zhong, Zhang Xianmin. Chip welding bubbles under the background of uneven X-ray detection[J]. Journal of Welding, 2011, 32(10):65-68.
    [6] 田艳红, 王宁, 杨东升, 等. 三维封装芯片键合IMC焊点应力分析及结构优化[J]. 焊接学报, 2012, 33(8):17-20. Tian Yanhong, Wang Ning, Yang Dongsheng, et al. 3 d encapsulation chip bonding IMC solder joint stress analysis and structure optimization[J]. Journal of Welding, 2012, 33(8):17-20.
    [7] Nishihori K, Ishida K, Kitaura Y, et al. GaAs MMIC thermal analysis for epoxy-mount compared with AuSn-mount[C]//Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 1994. Technical Digest 1994, 16th AnnualIEEE, 1994:275-278.
    [8] 王宏伟. 集成电路芯片封装热应力分析[J]. 新余学院学报, 2006, 11(4):87-90. Wang Hongwei. Integrated circuit chip packaging thermal stress analysis[J]. Journal of Xinyu College, 2006, 11(4):87-90.
    [9] 赵利华, 张开林. 热沉对焊接残余变形的影响及参数优化分析[J]. 焊接学报, 2012, 33(1):37-40. Zhao Lihua, Zhang Kailing. The effect of heat sink on welding residual deformation and parameters optimization analysis[J]. Journal of Welding, 2012, 33(1):37-40.
  • 期刊类型引用(3)

    1. 姚友谊,胡蓉. 高集成度收发组件芯片开裂故障分析及改进. 电子工艺技术. 2021(06): 344-348 . 百度学术
    2. 张杰,禹胜林,马美铭,王雨壮. 大功率GaN芯片封装的设计与热分析. 焊接. 2021(08): 24-28+63 . 百度学术
    3. 王亮,谢志辉,孙丰瑞,陈林根. 高热流密度回流式圆盘热沉构形设计中的应力-形变分析. 节能. 2018(12): 53-59 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  591
  • HTML全文浏览量:  23
  • PDF下载量:  282
  • 被引次数: 6
出版历程
  • 收稿日期:  2016-03-13

目录

    /

    返回文章
    返回