高级检索

气体流量和耦合度对GPCA-TIG焊电弧特性影响的数值模拟

黄勇, 陆肃中, 王新鑫, 李慧

黄勇, 陆肃中, 王新鑫, 李慧. 气体流量和耦合度对GPCA-TIG焊电弧特性影响的数值模拟[J]. 焊接学报, 2016, 37(6): 69-74.
引用本文: 黄勇, 陆肃中, 王新鑫, 李慧. 气体流量和耦合度对GPCA-TIG焊电弧特性影响的数值模拟[J]. 焊接学报, 2016, 37(6): 69-74.
HUANG Yong, LU Suzhong, WANG Xinxin, LI Hui. Numerical simulation on effect of outer layer gas flow rate and coupling degree on arc characteristics of GPCA-TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(6): 69-74.
Citation: HUANG Yong, LU Suzhong, WANG Xinxin, LI Hui. Numerical simulation on effect of outer layer gas flow rate and coupling degree on arc characteristics of GPCA-TIG welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2016, 37(6): 69-74.

气体流量和耦合度对GPCA-TIG焊电弧特性影响的数值模拟

基金项目: 国家自然科学基金资助项目(51265029)

Numerical simulation on effect of outer layer gas flow rate and coupling degree on arc characteristics of GPCA-TIG welding

  • 摘要: 根据磁流体动力学理论和组分守恒建立气体熔池耦合活性TIG焊电弧二维数学模型,采用简化阴极边界层模型将阴极与电弧耦合求解,计算得到了不同外层氧气流量与耦合度下电弧等离子的温度、氧气分布、阳极表面电流密度和热流密度等特征参数。结果表明,与TIG电弧相比,气体熔池耦合活性TIG电弧收缩,流速增大,阳极表面电弧压力升高;增大外层氧气流量或增大耦合度,电弧最高温度均上升,氧气向电弧区域扩散趋势更明显,电弧形貌略有收缩,阳极表面电流密度与热流峰值均略有增大。
    Abstract: A two-dimensional axisymmetric model for Gas Pool Coupled Activating TIG welding is established based on the MHD theory and species conservation. Arc plasma coupled with cathode is numerically simulated by simplified cathode sheath model. By solving this model, the distributions of temperature, oxygen, current density and heat flux at anode surface under different outer layer gas flow and coupling degree are obtained. The results show that the arc of gas pool coupled activating TIG welding constricts, the velocity of plasma and arc pressure at anode surface increase compared with TIG arc under the same conditions. Increasing the flow rate of oxygen or the coupling degree, the maximum temperature of arc rises, the trend of oxygen diffuses into arc is more obvious, the welding arc constricts slightly, the peak values of current density and heat flux at anode surface all increase.
  • [1] 黄 勇, 刘瑞琳, 樊 丁, 等. 气体熔池耦合活性TIG焊方法[J]. 焊接学报, 2012, 33(9): 13-16. Huang Yong, Liu Ruilin, Fan Ding, et al. Gas pool coupled activating welding method [J]. Transactions of the China Welding Institution, 2012, 33(9): 13-16.
    [2] 黄 勇, 王艳磊, 张治国. 氮氧元素联合过渡对气体熔池耦合活性TIG焊电弧的影响[J]. 焊接学报, 2015, 36(3): 31-34. Huang Yong, Wang Yanlei, Zhang Zhiguo. The effect of introduction of nitrogen in conjunction with oxygen on the welding arc of Gas Pool Coupled Activating TIG[J]. Transactions of the China Welding Institution, 2015, 36(3): 31-34.
    [3] 黄 勇, 王艳磊, 张治国. 氮氧元素联合过渡对GPCA-TIG焊焊缝的影响[J]. 焊接学报, 2015, 36(4): 1-4. Huang Yong, Wang Yanlei, Zhang Zhiguo. Effect of nitrogen in conjunction with oxygen on GPCA-TIG weld[J]. Transactions of the China Welding Institution, 2015, 36(4): 1-4.
    [4] Xu G, Hu J, Tsai H L. Modeling three-dimensional plasma arc in gas tungsten arc welding[J]. Journal of Manufacturing Science and Engineering, 2012, 134(3): 031001-031013.
    [5] Savas A, Ceyhun V. Finite element analysis of GTAW arc under different shielding gases[J]. Computational Materials Science, 2012, 51(1): 53-71.
    [6] Iwao T, Mori Y, Okubo M, et al. Modeling of metal vapor in pulsed TIG including influence of self-absorption [J]. Journal of Physics D: Applied Physics, 2010, 43(43): 434010.
    [7] Lowke J J, Morrow R, Haidar J. A simplified unified theory of arcs and their electrodes[J]. Journal of Physics D: Applied Physics, 1997, 30: 2033-2042.
    [8] Murphy A B. Transport coefficients of plasmas in mixtures of nitrogen and hydrogen[J]. Chemical Physics, 2012, 398: 64-72.
    [9] Murphy A B, Arundell C J. Transport coefficients of argon, nitrogen, oxygen, argon-nitrogen, and argon-oxygen plasma[J]. Plasma Chemistry and Plasma Processing, 1994, 14: 451-490.
    [10] Murphy A B. A comparison of treatments of diffusion in thermal plasmas[J]. Journal of Physics D: Applied Physics, 1996, 29: 1922-1932.
    [11] Murphy A B. Diffusion in equilibrium mixtures of ionized gases[J].Physical Review E, 1993, 48: 3594-3603.
    [12] Cram L E. A model of the cathode of a thermionic arc[J]. Journal of Physics D: Applied Physics, 1983, 16: 1643-1650.
    [13] 黄 勇, 王艳磊, 张治国. 氧引入对气体熔池耦合活性TIG焊电弧的影响[J]. 光谱学与光谱分析, 2014, 34(5): 1168-1171. Huang Yong, Wang Yanlei, Zhang Zhiguo. Impact of induction of O2 on the welding arc of gas pool coupled activating TIG [J]. Spectroscopy and Spectral Analysis, 2014, 34(5): 1168-1171.
    [14] 董文超. 高效率TIG焊数值模拟与熔池形貌演变研究[D]. 中国科学院金属研究所, 2009.
  • 期刊类型引用(4)

    1. 赵瑞,方涛,程方杰. D-GTAW焊枪枪头的设计及工艺研究. 兵器材料科学与工程. 2019(03): 58-61 . 百度学术
    2. 王新鑫,迟露鑫,伍光凤,李春天,樊丁. Ar-O_2混合气体电弧的数值模拟. 物理学报. 2019(17): 261-270 . 百度学术
    3. 赵瑞,张淑华,方涛,程方杰. CO_2+Ar非熔化极双层气保护焊中CO_2影响的研究. 电焊机. 2018(09): 21-25 . 百度学术
    4. 李素苹,李春燕,李根. 2A14合金焊接熔池凝固界面的计算机模拟与验证. 铸造技术. 2017(07): 1734-1737 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  471
  • HTML全文浏览量:  2
  • PDF下载量:  295
  • 被引次数: 11
出版历程
  • 收稿日期:  2014-09-15

目录

    /

    返回文章
    返回