Influence of Wire Feeding Mode on Formation of Single-pass Multilayer Inclined Parts in Laser Wire Additive Manufacturing
-
摘要:
为了研究送丝方式对激光熔丝增材制造倾斜零件成形的影响,在前置送丝、后置送丝和侧置送丝方式下进行单道多层倾斜零件的激光熔丝沉积实验,对比分析了倾斜零件的宏观形貌、截面形貌、成形尺寸和各沉积层轮廓拟合圆心轨迹的变化. 结果表明:旁轴送丝的送丝方式对激光熔丝单道多层倾斜零件的宏观形貌、各沉积层的平均层高、平均壁厚和平均倾斜角度均有影响. 后置送丝制造倾斜零件的层高波动值和壁厚波动值最小,倾斜角误差也较小,成形精度较好;侧置送丝制造倾斜零件的层高波动值、壁厚波动值和倾斜角误差最大,成形精度较差. 后置送丝时焊丝可稳定地送入到熔池中后部,各沉积层的实际成形位置稳定,制造的各倾斜零件的成形精度相对较好.
Abstract:In order to study the influence of wire feeding mode on the formation of inclined parts in laser wire additive manufacturing, the laser wire deposition experiments of single-pass multilayer inclined parts were carried out under the modes of front wire feeding, rear wire feeding and side wire feeding. The changes of macroscopic morphology, cross-sectional morphology, forming size and the fitted center trajectory of each deposited layer contour were compared and analyzed. The results show that the paraxial wire feeding mode has an influence on the macroscopic morphology, average height, average wall thickness and average inclined angle of the single-pass multilayer inclined part. The height fluctuation value and wall thickness fluctuation value of the inclined part manufactured by rear wire feeding are the smallest, and the inclined angle error is also small, so the forming accuracy is better. The height fluctuation value, wall thickness fluctuation value and inclined angle error of inclined parts manufactured by side wire feeding are the largest, and the forming accuracy is poor. The welding wire can be stably fed into the middle and rear part of the molten pool under rear wire feeding mode, the actual forming position of each deposited layer is stable, and the forming accuracy of each inclined part is relatively better.
-
-
图 2 获得包含每层顶部轮廓曲线的截面形貌图的方法
(a)提取每层相同位置截面处的轮廓曲线 (b) 在截面形貌图中添加每层的顶部轮廓曲线
Figure 2. Method of obtaining cross-sectional topography containing top contour curve of each layer. (a) extracting section contour curve of each layer at the same position; (b) adding top contour curve of each layer to section topography
表 1 不同送丝方式下倾斜零件的成形尺寸
Table 1 Forming dimensions of inclined parts under different wire feeding modes
送丝方式 平均层高
ha/mm层高波动值
σh /mm平均壁厚
δa/mm壁厚波动值
σδ /mm平均倾斜角度
θa/°倾斜角误差
△θ/°前置 0.459 0.084 2.506 0.156 56.49 0.18 后置 0.467 0.071 2.424 0.125 56.65 0.34 侧置 0.429 0.14 2.511 0.196 54.88 -1.43 表 2 不同送丝方式下各试样沉积层轮廓拟合圆心的直线拟合度R2
Table 2 Linear fitting degree R2 of the fitted center of deposited layer contour in each sample under different wire feeding modes.
送丝方式 沉积层轮廓拟合圆心的直线拟合度R2 试样1 R21 试样2 R22 试样3 R23 平均值R2a 前置 0.9864 0.9839 0.9569 0.9757 后置 0.9886 0.9947 0.9968 0.9934 侧置 0.9156 0.9849 0.9326 0.9444 -
[1] 周庆军, 严振宇, 张京京, 等. 航天运载器大型金属构件激光定向能量沉积研究及应用进展(特邀)[J]. 中国激光, 2024, 51(10): 33 − 55. Zhou Qingjun, Yan Zhenyu, Zhang Jingjing, et al. Research progress and application progress of laser directed energy deposition on large-scale metal components in aerospace (invited)[J]. Chinese Journal of Lasers, 2024, 51(10): 33 − 55.
[2] Ai Y, Yan Y, Yuan P, et al. The numerical investigation of cladding layer forming process in laser additive manufacturing with wire feeding[J]. International Journal of Thermal Sciences, 2024, 196: 108669. doi: 10.1016/j.ijthermalsci.2023.108669
[3] Abuabiah M, Mbodj N G, Shaqour B, et al. Advancements in Laser Wire-Feed Metal Additive Manufacturing: A Brief Review[J]. Materials, 2023, 16: 2030. doi: 10.3390/ma16052030
[4] Wang Q, Shi Y, Li X, et al. Additive technology of high-frequency induction-assisted laser wire deposition[J]. Optics & Laser Technology, 2023, 167: 109785.
[5] Wang L, Wang L, Feng Q, et al. High surface quality additive manufacturing process of titanium alloy with composite heat source[J]. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 2024, 238(1-2): 37 − 47. doi: 10.1177/09544054231158407
[6] Li N, Wang Q, Bermingham M, et al. Tensile properties and microstructural evolution of 17-4 PH stainless steel fabricated by laser hybrid additive manufacturing technology[J]. International Journal of Plasticity, 2024, 173: 103885. doi: 10.1016/j.ijplas.2024.103885
[7] Wang X, Zhang L J, Ning J, et al. Fluid Thermodynamic Simulation of Ti-6Al-4V Alloy in Laser Wire Deposition[J]. 3D Printing and Additive Manufacturing, 2023, 10(4): 661 − 673. doi: 10.1089/3dp.2021.0159
[8] Song Y, Yuan C, Huang W, et al. Research on hole inhibiting mechanism of 5A06 aluminum alloy during laser oscillating fuse deposition forming[J]. Optics & Laser Technology, 2023, 164: 109530.
[9] Bernauer C, Sigl M E, Grabmann S, et al. Effects of the thermal history on the microstructural and the mechanical properties of stainless steel 316L parts produced by wire-based laser metal deposition[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2024, 889: 145862. doi: 10.1016/j.msea.2023.145862
[10] 朱长顺, 毛计洲, 王宏宇, 等. 粉芯丝材激光增材制造Fe-xMn-6Si-9Cr-5Ni合金记忆性能[J]. 焊接学报, 2023, 44(7): 102 − 108. doi: 10.12073/j.hjxb.20220819003 Zhu Changshun, Mao Jizhou, Wang Hongyu, et al. Memory properties of Fe-xMn-6Si-9Cr-5Ni alloy by laser additive manufacturing with powder cored wire[J]. Transactions of the China Welding Institution, 2023, 44(7): 102 − 108. doi: 10.12073/j.hjxb.20220819003
[11] 刘希芝. 电弧增材倾斜薄壁件工艺优化与热力耦合数值模拟[D]. 天津工业大学, 2023. Liu Xizhi. Process optimization and thermal coupling numerical simulation of inclined thin-wall parts with wire arc additive manufacturing[D]. Tiangong University, 2023.
[12] Jing C, Mao H, Xu T, et al. Fabricating 316L stainless steel unsupported rods by controlling the flow of molten pool via wire arc additive manufacturing[J]. Journal of Materials Processing Technology, 2023, 319: 118066. doi: 10.1016/j.jmatprotec.2023.118066
[13] Chen L, Yu T, Chen Y, et al. Slicing strategy and process of laser direct metal deposition (DMD) of the inclined thin-walled part under open-loop control[J]. Rapid Prototyping Journal, 2022, 28(1): 68 − 86. doi: 10.1108/RPJ-09-2020-0216
[14] Arregui L, Garmendia I, Pujana J, et al. Study of the geometrical limitations associated to the metallic part manufacturing by the LMD process[C]. 19th CIRP Conference on Electro Physical and Chemical Machining: 2018, 68: 363-368.
[15] Ai Y, Wang Y, Han S, et al. Investigation of cladding layer formation in uphill wire laser additive manufacturing on inclined substrate[J]. Applied Thermal Engineering, 2024, 247: 122919. doi: 10.1016/j.applthermaleng.2024.122919
[16] 王续跃, 王彦飞, 江豪, 等. 圆形倾斜薄壁件的激光熔覆成形[J]. 中国激光, 2014, 41(1): 84 − 89. Wang Xuyue, Wang Yanfei, Jiang Hao, et al. Laser cladding forming of circular inclined thin-walled parts[J]. Chinese Journal of Lasers, 2014, 41(1): 84 − 89.
[17] Taghizadeh M, Zhu Z H. A comprehensive review on metal laser additive manufacturing in space: Modeling and perspectives[J]. Acta Astronautica, 2024, 222: 403 − 421. doi: 10.1016/j.actaastro.2024.06.027
[18] 杨鑫, 韩红彪, 闫晨宵, 等. 送丝角度与方式对激光熔丝单道沉积层成形的影响[J]. 焊接学报, 2024, 45(4): 43 − 48 + 56. doi: 10.12073/j.hjxb.20230324002 Yang Xin, Han Hongbiao, Yan Chenxiao, et al. Effect of wire feeding angle and wire feeding mode on the formation of single-track laser wire deposition layer[J]. Transactions of the China Welding Institution, 2024, 45(4): 43 − 48 + 56. doi: 10.12073/j.hjxb.20230324002
-
期刊类型引用(5)
1. 陈健,刘海浪,卢儒学,张倩,曾壮基. 电子束熔覆工艺对合金表面改性的研究现状. 热加工工艺. 2021(12): 30-33+38 . 百度学术
2. 王枚,冯彦铭,陈依. 热障涂层材料研究进展. 机电工程技术. 2021(12): 333-336 . 百度学术
3. 陈军,李伟,贺冬云,郝胜智. 强流脉冲电子束表面改性FeCrAl涂层的显微组织及耐高温腐蚀性能研究. 表面技术. 2020(05): 200-206 . 百度学术
4. 党丽. 水溶性金属热处理保护涂层耐腐蚀性能研究. 合成材料老化与应用. 2020(06): 117-120 . 百度学术
5. 韩志勇,卢博文,王仕成. Pt改性对NiAl涂层氧化性能及显微组织的影响. 焊接学报. 2020(09): 44-48+99 . 本站查看
其他类型引用(2)