Research progress and prospect of welding intelligent monitoring technology
-
摘要:
在国家“十四五”智能制造和 2035 制造业高质量发展远景目标规划下,智能化焊接技术的重要性不言而喻.首先,分析了该技术在学术界和工业界的成果发表情况,对目前成果分布的特点进行了总结. 此外,列出了该学科方向举办的系列重要学术会议,充分展示了该学科的研究热度.其次,分别从声音、光谱、视觉、热学及多信息融合监测角度出发,综述了焊接/增材技术在缺陷在线检测、过程动态表征、质量监控等方面最新的国内外研究进展,表明了多源信息融合技术是焊接智能化监测技术未来发展的主流.最后,总结了现阶段国内焊接智能化-缺陷在线监测基础研究存在的“六多六少”现象,并从多场景拓展应用出发,指出了焊接智能监测技术的未来发展目标与重点突破问题.
Abstract:In the context of the National 14th Five-Year Plan for Intelligent Manufacturing and the Vision 2035 for High-Quality Development of Manufacturing, the significance of intelligent welding technology is readily apparent. First, this paper analyzes the publication status of research results in both academia and industry, summarizing the characteristics of the current distribution of achievements. Additionally, a series of important academic conferences related to this field are listed, highlighting the research popularity of this discipline. Furthermore, this review examines the latest domestic and international research progress in welding and additive manufacturing technologies from the perspectives of acoustics, spectroscopy, vision, thermography, and multi-information fusion monitoring. It indicates that multi-source information fusion technology is likely to be the mainstream approach for the future development of intelligent welding monitoring systems. Finally, the paper concluded the ‘six more and six less’ phenomena existing in the current stage of the domestic welding intelligence - defects online monitoring basic research, and from the multi-scenario to expand the application, pointed out the welding intelligent monitoring technology of the future development goals and key breakthroughs in the problem.
-
-
图 1 基于声发射时频特性的激光焊透监测[5]
Figure 1. Monitoring laser weld penetration using acoustic emission time-frequency characteristics
图 2 基于电弧声音的TF-CNN熔透识别模型[6]
Figure 2. TF-CNN melt-through detection model based on arc sound signals
图 3 具有VFL和VFB的自适应倒频谱框架[8]
Figure 3. Adaptive cepstrum frame with VFL and VFB
图 4 基于声发射技术的LPBF缺陷监测系统[10]
Figure 4. LPBF defect monitoring system based on acoustic emission technology
图 5 基于深度学习的数字孪生模型[14]
Figure 5. Deep learning based digital twin model
图 6 基于被动视觉的层宽反馈系统[16]
Figure 6. Layer-width feedback system based on passive vision
图 7 机器人焊接视觉制导框架[21]
Figure 7. Robot welding vision guidance frame
图 8 工业MIG焊熔池图像在线监测系统[22]
Figure 8. Online monitoring system for MIG welding molten pool
图 9 基于光谱分析的WAAM微观结构研究[26]
Figure 9. Study of WAAM microstructure using spectral analysis
图 10 基于光谱域知识的WAAM异常状态监测[27]
Figure 10. WAAM anomalous state monitoring based on spectral domain knowledge
图 11 激光诱导击穿光谱的原位多元素分析[28]
Figure 11. In situ multi-element analysis by laser-induced breakdown spectroscopy
图 12 层间强制冷却对温度场和应力场的影响[31]
Figure 12. Effect of interlayer forced cooling on the temperature and stress fields
图 13 基于热红外的电弧增材无损检测框架[32]
Figure 13. A thermal infrared testing framework for arc additive manufacturing
图 14 多信息融合GMAW焊接缺陷监测系统[43]
Figure 14. Multi-information fusion GMAW welding defect monitoring system
图 15 基于多传感器的激光焊接缺陷检测[44]
Figure 15. Detecting laser welding defects with multiple sensors
-
[1] 房海基, 吕波, 张艳喜, 等. 焊接过程声信号在线检测技术现状与展望[J]. 紧密成形工程, 2022, 14(1): 165 − 172. Fang Haiji, Lü Bo, Zhang Yanxi, et al. Status and prospect of on-line acoustic signal detection technology in welding[J]. Journal of Netshape Forming Engineering, 2022, 14(1): 165 − 172.
[2] Li Kaiqiang, Li Tao, Ma Min, et al. Laser cladding state recognition and crack defect diagnosis by acoustic emission signal and neural network[J]. Optics & Laser Technology, 2021, 142: 107161.
[3] Hauser T, Reisch R T, Kamps T, et al. Acoustic emissions in directed energy deposition processes[J]. The International Journal of Advanced Manufacturing Technology, 2022, 119(5-6): 3517 − 3532. doi: 10.1007/s00170-021-08598-8
[4] Li Hao, Gao Fei, Jiao Jinyang, et al. Acoustic emission-based cross-domain process health monitoring for additive manufacturing[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 3320740.
[5] Luo Zhongyi, Wu Di, Zhang Peilei, et al. Laser welding penetration monitoring based on time-frequency characterization of acoustic emission and CNN-LSTM hybrid network[J]. Materials, 2023, 16(4): 1614. doi: 10.3390/ma16041614
[6] Ren Wenjing, Wen Guangrui, Xu Bin, et al. A novel convolutional neural network based on time–frequency spectrogram of arc sound and its application on GTAW penetration classification[J]. IEEE Transactions on Industrial Informatics, 2020, 17(2): 809 − 819.
[7] Huang Jing, Zhang Zhifen, Qin Rui, et al. Interpretable real-time monitoring of pipeline weld crack leakage based on wavelet multi-kernel network[J]. Journal of Manufacturing Systems, 2024, 72: 93 − 103. doi: 10.1016/j.jmsy.2023.11.004
[8] Qin Rui, Huang Jing, Zhang Zhifen, et al. An adaptive cepstrum feature representation method with variable frame length and variable filter banks for acoustic emission signals[J]. Mechanical Systems and Signal Processing, 2024, 208: 111031. doi: 10.1016/j.ymssp.2023.111031
[9] Zhao Cang, Fezzaa K, Cunningham R W, et al. Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction[J]. Scientific Reports, 2017, 7(1): 3602. doi: 10.1038/s41598-017-03761-2
[10] Li Zhiwen, Zhang Zhifen, Zhang Shuai, et al. A novel approach of online monitoring for laser powder bed fusion defects: Air-borne acoustic emission and deep transfer learning[J]. Journal of Manufacturing Processes, 2023, 102: 579 − 592. doi: 10.1016/j.jmapro.2023.07.064
[11] Zhang Shuai, Zhang Zhifen, Chen Xizhang, et al. Intra-layer and inter-layer monitoring of laser powder bed fusion defects based on airborne acoustic and gn-Res model: pore and deformation[J]. Virtual and Physical Prototyping, 2024, 19(1): e2360699. doi: 10.1080/17452759.2024.2360699
[12] Ramalho A, Santos T G, Bevans B, et al. Effect of contaminations on the acoustic emissions during wire and arc additive manufacturing of 316L stainless steel[J]. Additive Manufacturing, 2022, 51: 102585. doi: 10.1016/j.addma.2021.102585
[13] 陈华斌, 孔萌, 吕娜, 等. 视觉传感技术在机器人智能化焊接中的研究现状[J]. 电焊机, 2017, 47(3): 1-16. Chen Huabin, Kong Meng, Lü Na, et al. Status and development of vision sensors on intelligentized robotic welding techologies. Electric Welding Machine, 2017, 47(3): 1-16.
[14] Wang Qiyue, Jiao Wenhua, Zhang Yuming. Deep learning-empowered digital twin for visualized weld joint growth monitoring and penetration control[J]. Journal of Manufacturing Systems, 2020, 57: 429 − 439. doi: 10.1016/j.jmsy.2020.10.002
[15] 王振民, 张丽玲, 薛家祥. 基于视觉处理的焊缝质量检测与控制系统[J]. 焊接技术, 2007(3): 60 − 62 + 4. doi: 10.3969/j.issn.1002-025X.2007.03.023 Wang Zhenmin, Xhang Liling, Xue Jiaxiang. A novel welding quality detecting and controlling system based on machine vision technique[J]. Welding Technology, 2007(3): 60 − 62 + 4. doi: 10.3969/j.issn.1002-025X.2007.03.023
[16] Xia Chunyang, Pan Zengxi, Zhang Shiyu, et al. Model predictive control of layer width in wire arc additive manufacturing[J]. Journal of Manufacturing Processes, 2020, 58: 179 − 186. doi: 10.1016/j.jmapro.2020.07.060
[17] He Yinshui, Ma Guohong, Chen Shanben, et al. Autonomous decision-making of welding position during multipass GMAW with T-joints: A Bayesian network approach[J]. IEEE Transactions on Industrial Electronics, 2021, 69(4): 3909 − 3917 .
[18] Huang Junfen, Xue Long, Huang Jiqiang, et al. GMAW penetration state prediction based on visual sensing[J]. Journal of Mechanical Engineering, 2019, 55(17): 41 − 47. doi: 10.3901/JME.2019.17.041
[19] Liu Tianyuan, Bao Jinsong, Wang Junliang, et al. Laser welding penetration state recognition method fused with timing information[J]. Chinese Journal of Lasers, 2021, 48(6): 0602119. doi: 10.3788/CJL202148.0602119
[20] 洪宇翔, 杨明轩, 都东, 等. 铝合金爬坡TIG焊熔池失稳状态的视觉检测[J]. 焊接学报, 2021, 42(10): 8 − 13 + 97-98. Hong Xiangyu, Yang Mingxuan, Du Dong, et al. Unstable state vision detection of molten pool during aluminum alloy climbing-TIG welding[J]. Transactions of the China Welding Institution, 2021, 42(10): 8 − 13 + 97-98.
[21] Xiao Runquan, Xu Yanling, Hou Zhen, et al. A novel visual guidance framework for robotic welding based on binocular cooperation[J]. Robotics and Computer-Integrated Manufacturing, 2022, 78: 102393. doi: 10.1016/j.rcim.2022.102393
[22] Wang Jie, Zhang Zhifen, Qin Rui, et al. Online identification of burn-through and weld deviation in sheet lap MIG welding based on YOLOv5[J]. Measurement Science and Technology, 2023, 35(2): 025119.
[23] Zhang Chen, Gao Ming, Chen Cong, et al. Spectral diagnosis of wire arc additive manufacturing of Al alloys[J]. Additive Manufacturing, 2019, 30: 100869. doi: 10.1016/j.addma.2019.100869
[24] 白子键, 李治文, 张志芬, 等. 基于电弧光谱的核电堵管TIG焊接质量在线监测[J]. 焊接学报, 2024, 45(5): 8 − 19. doi: 10.12073/j.hjxb.20230610002 Bai Zijian, Li Zhiwen, Zhang Zhifen, et al. On-line monitoring of TIG welding quality of nuclear power plug tube based on arc spectrum[J]. Transactions of the China Welding Institution, 2024, 45(5): 8 − 19. doi: 10.12073/j.hjxb.20230610002
[25] 李晨星, 肖笑, 孟令燃, 等. 电弧增材制造的热源光谱分析[J]. 材料热处理学报, 2022, 23(8): 186 − 194. Li Xincheng, Xiao Xiao, Meng Lingran, et al. Spectral analysis of heat source in arc additive manufacturing[J]. Transactions of Materials and Heat Treatment, 2022, 23(8): 186 − 194.
[26] Huang Yiming, Zhang Feng, Yuan Jiong, et al. Investigation on surface morphology and microstructure of double-wire + arc additive manufactured aluminum alloys based on spectral analysis[J]. Journal of Manufacturing Processes, 2022, 84: 639 − 651. doi: 10.1016/j.jmapro.2022.10.043
[27] Chen Lin, Yang Fei, Wang Rui, et al. Optical spectral physics-informed attention network for condition monitoring in WAAM[J]. IEEE Transactions on Industrial Electronics, 2024, 71(8): 9708 − 9718. doi: 10.1109/TIE.2023.3325570
[28] Lednev V N, Sdvizhenskii P A. Asyutin R D, et al. In situ multi-elemental analysis by laser induced breakdown spectroscopy in additive manufacturing[J]. Additive Manufacturing, 2019, 25: 64 − 70. doi: 10.1016/j.addma.2018.10.043
[29] Yang Dongqing, Wang Gang, Zhang Guangjun. Thermal analysis for single-pass multi-layer GMAW based additive manufacturing using infrared thermography[J]. Journal of Materials Processing Technology, 2017, 244: 215 − 224. doi: 10.1016/j.jmatprotec.2017.01.024
[30] 曹宏岩, 陈希章, 胡超, 等. 基于红外温度场的焊接质量在线检测方法[J]. 上海交通大学学报, 2016, 50(S1): 66 − 70. Cao Hongyan, Chen Xizhang, Hu Chao, et al. Welding quality online detection based on infrared temperature measurement[J]. Journal of Shanghai Jiaotong University, 2016, 50(S1): 66 − 70.
[31] 张云舒, 邵丹丹, 丁东红, 等. 层间强制冷却对电弧熔丝增材制造钛合金温度场和应力场的影响[J]. 电焊机, 2023, 53(2): 111 − 116. Zhang Yunshu, Hao Dandan, Ding Donghong, et al. Effect of active interpass cooling on temperature and thermal stress evolution of wire arc additively manufactured Ti6Al4V alloy[J]. Electric Welding Machine, 2023, 53(2): 111 − 116.
[32] Chen Xi, Fu Youheng, Kong Fanrong, et al. An in-process multi-feature data fusion nondestructive testing approach for wire arc additive manufacturing[J]. Rapid Prototyping Journal, 2022, 28(3): 573 − 584. doi: 10.1108/RPJ-02-2021-0034
[33] Gao Xiangdong, You Deyong, Katayama Seiji, et al. Infrared image recognition for seam tracking monitoring during fiber laser welding[J]. Mechatronics, 2012, 22(4): 370 − 380. doi: 10.1016/j.mechatronics.2011.09.005
[34] Han Yanfei, Jia Chungbao, He Chen, et al. Investigation on the metal transfer and cavity evolution during submerged arc welding with X-ray imaging technology[J]. Metals, 2023, 13(11): 1865. doi: 10.3390/met13111865
[35] Li Yuxing, Polden J, Pan Zengxi, et al. A defect detection system for wire arc additive manufacturing using incremental learning[J]. Journal of Industrial Information Integration, 2022, 27: 100291. doi: 10.1016/j.jii.2021.100291
[36] Zhu Beibei, Xiong Jun. Increasing deposition height stability in robotic GTA additive manufacturing based on arc voltage sensing and control[J]. Robotics and Computer-Integrated Manufacturing, 2020, 65: 101977. doi: 10.1016/j.rcim.2020.101977
[37] Chen Yang, Jiang Linzhao, Peng Yunchao, et al. Ultra-fast laser ultrasonic imaging method for online inspection of metal additive manufacturing[J]. Optics and Lasers in Engineering, 2023, 160: 107244. doi: 10.1016/j.optlaseng.2022.107244
[38] 丁东红, 黄荣, 张显程, 等. 电弧增材制造研究进展: 多源信息传感[J]. 焊接技术, 2022, 51(10): 1 − 20 + 113. Ding Donhong, Huang Rong, Zhang Xiancheng, et al. Research progress of wire arc additive manufacturing: Multi-source information sensing[J]. Welding Technology, 2022, 51(10): 1 − 20 + 113.
[39] 陈超. 基于IOT与MAS结构的智能化焊接制造过程监控及系统研究[D]. 上海: 上海交通大学, 2021. Chen Chao, Intelligent welding manufacturing process monitoring and system research based on IOT and MAS structure[D]. Shanghai: Shanghai Jiao Tong University, 2021.
[40] Yu Rongwei, Tan Xiaxia, He Shen, et al. Monitoring of robot trajectory deviation based on multimodal fusion perception in WAAM process[J]. Measurement, 2024, 224: 113933. doi: 10.1016/j.measurement.2023.113933
[41] Feng Yunhe, Chen Zongyao, Wang Dali, et al. Deep welding: A deep learning enhanced approach to GTAW using multisource sensing images[J]. IEEE Transactions on Industrial Informatics, 2019, 16(1): 465 − 474.
[42] Jiao Wenhua, Wang Qiyue, Cheng Yongchao, et al. End-to-end prediction of weld penetration: A deep learning and transfer learning based method[J]. Journal of Manufacturing Processes, 2021, 63: 191 − 197. doi: 10.1016/j.jmapro.2020.01.044
[43] 徐东辉, 孟范鹏, 陈树君, 等. 基于深度学习的GMAW焊接缺陷在线监测[J]. 焊接学报, 2024, 45(3): 14 − 119 + 135 − 136. doi: 10.12073/j.hjxb.20230117002 Xu Donghui, Meng Fanpeng, Chen Shujun, et al. GMAW welding defect on-line monitoring based on deep learning[J]. Transactions of the China Welding Institution, 2024, 45(3): 14 − 119 + 135 − 136. doi: 10.12073/j.hjxb.20230117002
[44] Zhang Yanxi, You Deyong, Gao Xiangdong, et al. Welding defects detection based on deep learning with multiple optical sensors during disk laser welding of thick plates[J]. Journal of Manufacturing Systems, 2019, 51: 87 − 94. doi: 10.1016/j.jmsy.2019.02.004