高级检索

QP980淬火-配分钢热模拟激光焊接热影响区性能

王金凤, 郭亿, 苏文超, 车亚军, 蔡笑宇, 李文娟, 徐肖飞

王金凤, 郭亿, 苏文超, 车亚军, 蔡笑宇, 李文娟, 徐肖飞. QP980淬火-配分钢热模拟激光焊接热影响区性能[J]. 焊接学报. DOI: 10.12073/j.hjxb.20240430002
引用本文: 王金凤, 郭亿, 苏文超, 车亚军, 蔡笑宇, 李文娟, 徐肖飞. QP980淬火-配分钢热模拟激光焊接热影响区性能[J]. 焊接学报. DOI: 10.12073/j.hjxb.20240430002
WANG Jinfeng, GUO Yi, SU Wenchao, CHE Yajun, CAI Xiaoyu, LI Wenjuan, XU Xiaofei. Thermal simulation laser welding heat affected zone performance of QP980 quenching-partitioning steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240430002
Citation: WANG Jinfeng, GUO Yi, SU Wenchao, CHE Yajun, CAI Xiaoyu, LI Wenjuan, XU Xiaofei. Thermal simulation laser welding heat affected zone performance of QP980 quenching-partitioning steel[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240430002

QP980淬火-配分钢热模拟激光焊接热影响区性能

基金项目: 

湖北省自然科学基金资助项目(2025AFD184)、先进焊接与连接国家重点实验室开放课题基金资助项目(AWJ-23M25)

详细信息
    作者简介:

    王金凤,博士,教授;研究方向为汽车轻量化材料连接技术;Email:ivwangjinfeng@126.com

  • 中图分类号: TG 456.7

Thermal simulation laser welding heat affected zone performance of QP980 quenching-partitioning steel

  • 摘要:

    文中采用Gleeble-3500热模拟系统对QP980淬火-配分钢激光焊接热影响区(heat affected zone,HAZ)不同亚区进行热模拟,通过研究HAZ不同亚区的组织和性能,并与焊接接头HAZ相同区域进行比较. 结果表明,热模拟获得的焊接HAZ各亚区组织与激光焊接接头相同区域的组织一致. 力学性能分析表明,在热模拟试样中,亚临界热影响区(sub-critical heat affected zone,SCHAZ)抗拉强度和硬度都最低,断后伸长率在整个焊接HAZ中最大. 拉伸试验中SCHAZ发生了明显的伸长,表明延展性能最好. 焊接接头横截面硬度分析表明,焊接接头的临界热影响区(inter-critical heat affected zone, ICHAZ)硬度低于母材( base metal, BM),为焊接接头的软化区. 焊接接头的拉伸性能及横截面硬度分布表明焊接接头的薄弱区域位于焊接HAZ的ICHAZ,与模拟焊接HAZ的性能吻合. 通过对SCHAZ的组织进行分析,相比BM的几何必须位错密度(geometrically necessary dislocations,GND)减少,平均晶粒尺寸增大,小角度晶界晶粒含量下降.

    Abstract:

    In this study, Gleeble-3500 thermal simulation system was used to simulate the different sub-regions of the heat affected zone of QP980 quenching-partitioning steel laser welding. The microstructure and properties of each sub-zone were studied and compared with the same area of the heat affected zone of the welded joint. The results showed that the microstructure of each sub-region of the welding heat affected zone obtained by thermal simulation is consistent with that of the same region of the laser welded joints. The mechanical properties analysis showed that the tensile strength and hardness of the sub-critical heat affected zone(SCHAZ) are the lowest in the thermal simulation samples, and the elongation after fracture is the largest in the whole welding heat affected zone. In the tensile test, obvious elongation also occurred in this area, indicating that its ductility was the best. The hardness analysis of the cross section of the welded joint showed that the hardness of the inter-critical heat affected zone(ICHAZ)of the welded joint is lower than that of the base metal(BM), which is the softening zone of the welded joint. The tensile properties and cross-sectional hardness distribution of the welded joint showed that the weak area of the welded joint is located in the ICHAZ, which is consistent with the performance of the simulated welding heat affected zone. Through the analysis of the microstructure of the SCHAZ, compared with the BM, the geometrically necessary dislocations (GND) must be reduced, the average grain size is increased, and the small angle grain content is decreased.

  • 图  1   QP980淬火-配分钢相变点

    Figure  1.   Phase transformation point of QP980 quenching-partitioning steel

    图  2   热模拟的热循环曲线

    Figure  2.   Thermal cycle curve of thermal simulation

    图  3   显微硬度测试

    Figure  3.   Microhardness test. (a) thermal simulation sample; (b) welded joint cross-section

    图  4   热模拟试样示意图(mm)

    Figure  4.   Thermal simulation sample schematic diagram

    图  5   激光焊接接头横截面宏观形貌

    Figure  5.   Macroscopic morphology of cross section of laser welding joints

    图  6   激光焊接接头HAZ微观组织

    Figure  6.   Macromorphology and microstructure in HAZ of laser welding joint. (a) SCHAZ; (b) ICHAZ; (c) FGHAZ; (d) CGHAZ

    图  7   峰值温度下模拟焊接HAZ微观组织

    Figure  7.   Simulated welding HAZ microstructure at peak temperatures. (a) SCHAZ; (b) ICHAZ; (c) FGHAZ; (d) CGHAZ

    图  8   激光焊接接头横截面硬度分布

    Figure  8.   Hardness distribution of the cross section of laser welding joint

    图  9   峰值温度下应力-应变曲线

    Figure  9.   Stress-strain curve at peak temperature

    图  10   QP980 BM微观组织EBSD分析

    Figure  10.   Microstructure EBSD analysis of QP980 BM. (a) SEM; (b) IPF; (c) KAM; (d) grain size distribution; (e) grain boundary misorientation distribution

    图  11   SCHAZ微观组织EBSD分析

    Figure  11.   Microstructure EBSD analysis of SCHAZ. (a) SEM; (b) IPF; (c) KAM; (d) grain size distribution; (e) grain boundary misorientation distribution

    表  1   QP980淬火-配分钢主要化学成分(质量分数,%)

    Table  1   Main chemical composition of QP980 quenching-partitioning steel

    CSiMnPSBAlFe
    0.191.642.670.0080.0010.0090.03余量
    下载: 导出CSV

    表  2   模拟焊接HAZ和BM拉伸力学性能

    Table  2   Tensile mechanical properties of simulated welding HAZ and BM

    位置 峰值温度
    T/℃
    抗拉强度
    Rm/MPa
    断后伸长率
    A(%)
    BM 1081 14.0
    SCHAZ 630 1008 11.9
    ICHAZ 780 1130 11.4
    FGHAZ 1000 1210 2.8
    CGHAZ 1200 1310 2.2
    下载: 导出CSV
  • [1]

    KUMAR S, SINGH S B. Microstructure-property relationship in the quenching and partitioning (Q&P) steel[J]. Materials Characterization, 2023, 196: 112561. doi: 10.1016/j.matchar.2022.112561

    [2] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体: 综述[J]. 材料导报, 2023, 37(7): 116 − 127.

    CHENG Xuan, GUI Xiaolu, GAO Guhui. Residual austenite in advanced high strength steels: a review[J]. Materials Reports, 2023, 37(7): 116 − 127.

    [3]

    RIOS A C, ARLAZAROV A, CHARBONNIER N, et al. Characterization and modelling of microstructure evolution during partitioning in Q&P steels[J]. Materialia, 2024, 33: 101981. doi: 10.1016/j.mtla.2023.101981

    [4] 姚喆赫, 潘成颢, 迟一鸣, 等. 超声复合激光制造技术研究进展(特邀)[J]. 中国激光, 2024, 51(4): 41 − 59.

    YAO Zhehe, PAN Chenghao, CHI Yiming, et al. research progress of ultrasonic assisted laser manufacturing technology(invited)[J]. Chinese Journal of Lasers, 2024, 51(4): 41 − 59.

    [5] 胡学安, 朱晓. 激光焊接技术发展和趋势[J]. 热加工工艺, 2024(13): 1 − 5,29.

    HU Xuean, ZHU Xiao. Development and trend of laser welding technology[J]. Hot Working Technology, 2024(13): 1 − 5,29.

    [6]

    ZHANG C G, TIAN J Z, TIAN A, YANG S L, et al. Effect of water cooling assistance on fatigue behavior of laser welded QP980 steel[J]. Journal of Materials Research and Technology, 2024, 28: 2060 − 2070. doi: 10.1016/j.jmrt.2023.12.138

    [7] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(S01): 447 − 453.

    TIAN Fei, LIN Hongtao, JIANG Haitao. Microstructure and mechanical properties of laser welded joint of high strength steel QP980[J]. Materials Reports, 2021, 35(S01): 447 − 453.

    [8] 陶泽菊, 许平达, 李伟, 等. Q&P1180高强钢激光焊接头的抗氢脆性能研究[J]. 有色金属材料与工程, 2023, 44(3): 36 − 44.

    TAO Zeju, XU Pingda, LI Wei, et al. Research on the hydrogen embrittlement resistance of laser welded joints of Q&P1180 high-strength steel[J]. Nonferrous Metal Materials and Engineering, 2023, 44(3): 36 − 44.

    [9]

    FAN C L, WANG H R, MA D F. Experimental study of nanoelectroplating steel spot welding structure under impact tensile-shear loading[J]. Materials Express, 2021, 11(7): 1207 − 1213. doi: 10.1166/mex.2021.2003

    [10] 张文广, 刘岩, 杜安娜, 等. 2 000 MPa级热成形钢双光斑激光 焊接接头成形研究[J]. 精密成形工程, 2023, 15(12): 142 − 149. doi: 10.3969/j.issn.1674-6457.2023.12.016

    ZHANG Wenguang, LIU Yan, DU Anna, et al. Double spot laser welded joint forming of 2000 mpa grade hot stamping steel[J]. Journal of Netshape Forming Engineering, 2023, 15(12): 142 − 149. doi: 10.3969/j.issn.1674-6457.2023.12.016

    [11]

    XUE J L, GUO W, ZHANG Y X, et al. Local microstructure and mechanical characteristics of HAZ and tensile behavior of laser welded QP980 joints[J]. Materials Science & Engineering A, 2022, 854: 143862.

    [12] 王艳杰, 赵琳, 彭云, 等. 中锰汽车钢焊接热影响区组织与韧性[J]. 机械工程学报, 2022, 58(24): 84 − 93. doi: 10.3901/JME.2022.24.084

    WANG Yanjie, ZHAO Lin, PENG Yun, et al. microstructure and toughness of welding heat affected zone of medium manganese automobile steel[J]. Journal of Mechanical Engineering, 2022, 58(24): 84 − 93. doi: 10.3901/JME.2022.24.084

    [13] 曹志龙, 朱浩, 安同邦, 等. 1 400 MPa级超高强钢SH-CCT曲线及其热影响区组织和性能[J]. 焊接学报, 2023, 44(8): 109 − 115. doi: 10.12073/j.hjxb.20220913001

    CAO Zhilong, ZHU Hao, AN Tongbang, et al. SH-CCT diagram and microstructure and properties of heat-affected-zone of 1 400 MPa ultra high strength steel[J]. Transactions of the China welding in stitution, 2023, 44(8): 109 − 115. doi: 10.12073/j.hjxb.20220913001

    [14] 姜喜铭. 超高强钢QP980 CMT焊接工艺及数值模拟研究[D]. 南昌: 南昌大学, 2021.

    JIANG Ximing, Study on welding process and numerical simulation of ultra high strength steel QP980 CMT[D]. Nanchang: Nanchang University, 2021

    [15] 蔺宏涛. 高强度钢QP980焊接接头的组织性能与氢脆敏感性研究[D]. 北京: 北京科技大学, 2020.

    LIN Hongtao, Study on microstructure, properties and hydrogen embrittlement sensitivity of welded joints of high strength steel QP980[D], Beijing: University of Science and Technology Beijing, 2020

    [16] 王金凤, 苏文超, 蔡笑宇, 等. QP980淬火-配分钢MAG焊接头组织及力学性能[J]. 钢铁, 2023, 58(12): 119 − 127.

    WANG Jinfeng, SU Wenchao, CAI Xiaoyu, et al. Microstructure and mechanical properties of QP980 MAG welded joints[J]. Iron and Steel, 2023, 58(12): 119 − 127.

    [17]

    ZHANG W, TAO W, YANG S L. Mechanical properties and fracture behaviors in remote laser spot welding of quenching and partitioning 980 steel[J]. Optics & Laser Technology, 2021, 140: 107053.

    [18] 王金凤, 袁耀, 李聪. 激光拼焊异种超高强钢组织和力学性能[J]. 钢铁, 2022, 57(9): 138 − 147.

    WANG Jinfeng, YUAN Yao, LI Cong. Microstructures and mechanical properties of laser tailor-welded dissimilar super-high strength steel sheets[J]. Iron and Steel, 2022, 57(9): 138 − 147.

    [19] 宋涛, 张大斌, 曹阳, 等. QP980高强钢激光焊温度场及接头组织演变仿真分析[J]. 组合机床与自动化加工技术, 2021(12): 117 − 120.

    SONG Tao, ZHANG Dabin, CAO Yang, et al. Simulation analysis of temperature field and joint microstructure evolution in laser welding of QP980 high strength steel[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2021(12): 117 − 120.

    [20] 马文杰, 宋刚, 孙紫倩, 等. QP980钢脉冲激光-TIG复合搭接焊接头的成形及力学性能[J]. 中国激光, 2023, 50(16): 22 − 29.

    MA Wenjie, SONG Gang, SUN Ziqian, et al. Forming and Mechanical Properties of pulsed laser-TIG hybrid lap welded joints for QP980 steel[J]. Chinese Journal of Lasers, 2023, 50(16): 22 − 29.

    [21] 杨景卫, 陈嘉乐, 李涛, 等. QP980高强钢小光斑激光焊接接头组织与性能研究[J]. 应用激光, 2023, 43(5): 37 − 42.

    YANG Jingwei, CHEN Jiale, LI Tao, et al. Study on microstructure and properties of QP980 high strength steel joint welded by small laser spot welding[J]. Applied Laser, 2023, 43(5): 37 − 42.

    [22] 杨立军, 孙明升, 王金凤, 等. DP980超高强钢激光焊接接头组织及性能研究[J]. 天津大学学报(自然科学与工程技术版), 2017, 50(3): 290 − 294.

    YANG Lijun, SUN Mingsheng, WANG Jinfeng, et al. Microstructure and properties of laser welding ultra-high strength steel DP980 joints[J]. Journal of Tianjin University: Science and Technology, 2017, 50(3): 290 − 294.

    [23] 王金凤, 杨立军, 孙明升, 等. 快速冷却对DP1000双相钢激光焊接接头性能的影响[J]. 焊接学报, 2019, 40(1): 113 − 118. doi: 10.12073/j.hjxb.2019400023

    WANG Jinfeng, YANG Lijun, SUN Mingsheng, et al. Effect of rapid cooling on mechanical properties of welded joint in laser welding of DP1000 dual phase steel[J]. Transactions of the China Welding Institution, 2019, 40(1): 113 − 118. doi: 10.12073/j.hjxb.2019400023

  • 期刊类型引用(10)

    1. 曾凯,田海,邢保英,张洪申,王凯伟,何晓聪. 自冲铆机械内锁结构形态的超声无损检测方法. 机械工程学报. 2024(02): 10-16 . 百度学术
    2. 张子豪,曾凯,张洪申,邢保英,丁燕芳,田海. 基于球形底模的铝合金自冲铆接工艺多元回归模型. 焊接学报. 2024(07): 59-66 . 本站查看
    3. 游仁正,窦炜,张洪申,邢保英,曾凯. 2024铝合金自冲铆成形工艺参数对接头微动滑移的影响. 塑性工程学报. 2024(11): 105-111 . 百度学术
    4. 陈贵坤,曾凯,邢保英,何晓聪,孙晓婷. 自冲铆接铆钉材料流场的数值模拟研究. 锻压技术. 2023(01): 96-102 . 百度学术
    5. 王增强,邱然锋,张坤,闫炳辰,孟令燃,赵培峰. 铆钉硬度对铝合金/钢电阻铆焊接头性能的影响. 材料热处理学报. 2023(01): 181-190 . 百度学术
    6. 王端义. 基于DEFORM的5052铝合金板料防水铆接成形研究. 锻压技术. 2023(12): 81-86 . 百度学术
    7. 杨进,邢保英,何晓聪,曾凯,周路. 腐蚀环境下自冲铆接头竞争失效机制及力学性能分析. 焊接学报. 2022(07): 69-75+117 . 本站查看
    8. 孙晓婷,曾凯,何晓聪,邢保英. 铝合金自冲铆成形过程最大冲压载荷的反演模型. 中国机械工程. 2021(11): 1341-1345+1353 . 百度学术
    9. 任柯旭,邱然锋,张肖飞,赵江辉. 铝合金/钢的点连接技术研究现状. 材料热处理学报. 2021(09): 1-11 . 百度学术
    10. 宋承裕,何晓聪,卢嘉伟,魏文杰,王世鹏. 铝/铜合金自冲铆接头性能的研究. 兵器材料科学与工程. 2020(04): 126-130 . 百度学术

    其他类型引用(9)

图(11)  /  表(2)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  2
  • PDF下载量:  0
  • 被引次数: 19
出版历程
  • 收稿日期:  2024-04-29
  • 网络出版日期:  2025-06-09

目录

    /

    返回文章
    返回