高级检索

Cu箔钎焊Al2O3陶瓷和TC4合金的界面组织和力学性能

戴必胜, 王昊, 赵禹, 王东生, 王刚

戴必胜, 王昊, 赵禹, 王东生, 王刚. Cu箔钎焊Al2O3陶瓷和TC4合金的界面组织和力学性能[J]. 焊接学报. DOI: 10.12073/j.hjxb.20240421001
引用本文: 戴必胜, 王昊, 赵禹, 王东生, 王刚. Cu箔钎焊Al2O3陶瓷和TC4合金的界面组织和力学性能[J]. 焊接学报. DOI: 10.12073/j.hjxb.20240421001
DAI Bi sheng, WANG Hao, ZHAO Yu, WANG Dong sheng, WANG Gang. Interfacial microstructure and mechanical properties of Al2O3 ceramics and TC4 alloys brazed with Cu foils[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240421001
Citation: DAI Bi sheng, WANG Hao, ZHAO Yu, WANG Dong sheng, WANG Gang. Interfacial microstructure and mechanical properties of Al2O3 ceramics and TC4 alloys brazed with Cu foils[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION. DOI: 10.12073/j.hjxb.20240421001

Cu箔钎焊Al2O3陶瓷和TC4合金的界面组织和力学性能

基金项目: 

国家自然科学基金资助项目(52101030,52171148);安徽省杰出青年基金资助项目(2008085J23);安徽省高校协调创新项目(GXXT-2023-025,GXXT-2023-026);特种显示与成像技术安徽省技术创新中心开放性课题(2022AJ09001)

详细信息
    作者简介:

    戴必胜,硕士研究生;主要研究方向为材料连接技术;Email:dai_bi_sheng@163.com

    通讯作者:

    王刚(通信作者),博士,教授;Email:gangwang@ahpu.edu.cn.

  • 中图分类号: TG 454

Interfacial microstructure and mechanical properties of Al2O3 ceramics and TC4 alloys brazed with Cu foils

  • 摘要:

    采用Cu箔成功实现了Al2O3陶瓷与TC4合金之间钎焊连接,接头成形良好,无裂纹等明显缺陷. 系统研究了钎焊温度和保温时间对Al2O3/TC4接头显微组织和力学性能的影响规律,揭示了接头组织形成机理. 结果表明,在910 ℃,保温10 min的Al2O3/TC4接头的典型界面显微组织为Al2O3/Ti3(Cu,Al)3O/AlCu2Ti + (Ti,V)2(Cu,Al) + Ti(Cu,Al) + Ti3Cu4/α-Ti + β-Ti + Ti2Cu/TC4. 随着钎焊温度的升高,Ti3(Cu,Al)3O反应层厚度先增加后保持不变. 由于高温下接头中液态金属化合物逐渐溢出,接头整体宽度呈逐渐减小趋势,且Ti3Cu4连续成层,接头的抗剪强度先增大后减小. 随着保温时间的延长,接头整体宽度呈逐渐减小趋势,Ti3(Cu,Al)3O反应层的厚度逐渐增加,厚度过大的反应层对接头力学性能产生不利影响,接头的抗剪强度先增大后减小,在910 ℃下保温10 min时达到最大,抗剪强度为102 MPa.

    Abstract:

    Successful brazing connection between Al2O3 ceramic and TC4 alloy was achieved using Cu foil, producing well-formed joints without obvious defects such as cracks. The effects of brazing temperature and holding time on the microstructure and mechanical properties of Al2O3/TC4 joints were systematically investigated, revealing the joint formation mechanism. The results show that the typical interfacial microstructure of Al2O3/TC4 joints brazed at 910 ℃ for 10 min was Al2O3/Ti3(Cu,Al)3O /AlCu2Ti + (Ti,V)2(Cu,Al) + Ti(Cu,Al) + Ti3Cu4/α-Ti + β-Ti + Ti2Cu/TC4. With increasing brazing temperature, the Ti3(Cu,Al)3O reaction layer first gradually thickened and then remained stable. Due to the gradual overflow of liquid metallic compounds at high temperatures, the overall joint width showed a decreasing trend, while Ti3Cu4 formed continuous layers. The shear strength of the joints first increased and then decreased. With prolonged holding time, the joint width gradually decreased and the thickness of Ti3(Cu,Al)3O reaction layer increased. The excessively thick reaction layer adversely affected the mechanical properties, causing the shear strength to first increase and then decrease, reaching a maximum value of 102 MPa at 910 ℃ for 10 min holding time.

  • 图  1   在910 ℃下保温10 min的钎焊接头SEM和 EDS

    Figure  1.   Brazed joints SEM and EDS at 910 ℃ for 10 min. (a) SEM for Joints; (b) O;(c) Al; (d) Cu; (e) Ti; (f) V

    图  2   钎焊接头典型界面组织

    Figure  2.   Brazed joints typical interfacial microstructures. (a) joint; (b) magnified view of the Al2O3 side; (c) magnified view of the TC4 side

    图  3   钎焊接头部分区域TEM明场像和元素分布

    Figure  3.   Brazed joint bright-field TEM image and elemental distribution. (a) bright-field TEM image; (b) Al; (c) O; (d) Cu; (e) Ti; (f) V

    图  4   图3中不同相的SAED图案

    Figure  4.   Different phases SAED patterns in Figure 3. (a) C1 phase; (b) C2 phase; (c) C3 phase

    图  5   钎焊接头XRD

    Figure  5.   Brazed joints XRD

    图  6   不同钎焊温度下保温10 min的界面组织

    Figure  6.   Interfacial microstructuresof joints for 10 min at different brazing temperatures. (a) 900 ℃; (b) local magnification of the Al2O3 side in Fig. 6(a); (c) local magnification of the TC4 side in Fig. 6(a); (d) 910 ℃; (e) local magnification of the Al2O3 side in Fig. 6(d); (f) local magnification of the TC4 side in Fig. 6(d); (g) 920 ℃; (h) local magnification of the Al2O3 side in Fig. 6(g); (i) local magnification of the TC4 side in Fig. 6(d)

    图  7   断口的宏观形貌和显微组织

    Figure  7.   Macroscopic morphology and microstructure of fracture. (a) 900 ℃; (b) 910 ℃; (c) 920 ℃

    图  8   不同保温时间910 ℃下的接头界面组织

    Figure  8.   Microstructure of joints at 910 ℃ with different holding times. (a) 5 min; (b) local magnification of the Al2O3 side in Fig. 8(a) ; (c) local magnification of the TC4 side in Fig. 8(a) ; (d) 15 min; (e) local magnification of the Al2O3 side in Fig. 8(d) ; (f) local magnification of the TC4 side in Fig. 8(d)

    图  9   钎焊接头显微组织形成机理

    Figure  9.   Brazed joints microstructure formation mechanism. (a) physical contact stage; (b) eutectic reaction stage; (c) elemental diffusion stage; (d) cooling and solidification stage

    表  1   钎焊接头典型界面组织 EDS分析结果(原子分数,%)

    Table  1   Brazed joints typical Interfacial microstructures EDS results

    生成相 O Al Ti V Cu 可能相
    B1 10.40 17.14 38.43 0.54 33.49 Ti3(Cu,Al)3O
    B2 0.97 22.88 21.36 0 54.79 AlCu2Ti
    B3 7.51 17.31 45.40 16.06 13.72 (Ti,V)2(Cu,Al)
    B4 3.77 8.76 51.20 1.78 34.49 Ti(Cu,Al)
    B5 3.09 41.88 1.09 53.94 Ti3Cu4
    B6 17.06 78.68 2.72 1.54 α-Ti
    B7 9.21 67.86 17.40 5.53 β-Ti
    B8 5.72 8.74 60.32 0.67 24.55 Ti2Cu
    下载: 导出CSV
  • [1]

    ZHANG D K, WEI Z B, WANG K H, et al. Brazing of Al2O3-6061 aluminum alloy based on femtosecond laser surface groove structure[J]. Ceramics International, 2022, 48(24): 36953 − 36960. doi: 10.1016/j.ceramint.2022.08.263

    [2]

    ZHANG Q, LU Y, WANG J, et al. Enhanced bonding of Al2O3/Al2O3 joints brazed by Ni50Ti50 master alloy interlayer[J]. Vacuum, 2021, 185: 110000. doi: 10.1016/j.vacuum.2020.110000

    [3]

    JIANG N, SONG X Q, BIAN H, et al. Interfacial microstructure evolution and mechanical properties of Al2O3/Al2O3 joints brazed with Ti-Ni-Nb filler metal[J]. Journal of Materials Research and Technology, 2023, 24: 3901 − 3912. doi: 10.1016/j.jmrt.2023.04.088

    [4]

    QIU D C, GAO Z, BA X L, et al. Vacuum brazing of SiCp/Al composites and TC4 titanium alloy: microstructure evolution and mechanical properties[J]. Vacuum, 2023, 218: 112662. doi: 10.1016/j.vacuum.2023.112662

    [5]

    LIANG Y Z, DONG K W, YANG Y, et al. Vacuum brazing of YSZ ceramic and TC4 alloy with a Ti20Zr20Hf20Cu20Ni20 high entropy amorphous alloy[J]. Materials Science & Engineering A, 2022, 854: 143815.

    [6]

    WANG W, LUO Z Y, WANG G, et al. Microstructure and mechanical properties of brazed In718/SiC joints with AgCuTi/Cu foam/AgCuTi composite filler[J]. Journal of Materials Research and Technology, 2023, 23: 4757 − 4765. doi: 10.1016/j.jmrt.2023.02.113

    [7]

    ZHU Q Y, CAI Y Y, LIU Z, et al. Brazing Al2O3 to 4J42 using Ag-Cu-Ti/Cu/BNi-2 composite fillers with different thicknesses of Cu interlayer[J]. Ceramics International, 2023, 49(6): 9779 − 9788. doi: 10.1016/j.ceramint.2022.11.152

    [8]

    ZHU Q Y, LI S H, HU K J, et al. Enhanced mechanical properties and thermal cycling stability of Al2O3-4J42 joints brazed using Ag-Cu-Ti/Cu/Ag-Cu composite filler[J]. Ceramics International, 2021, 47(21): 30247 − 30255. doi: 10.1016/j.ceramint.2021.07.204

    [9]

    ZHANG J J, XIE D H, LI Q S, et al. Effect of holding time on the microstructure and strength of tungsten/steel joints by HIP diffusion bonded using a Cu interlayer[J]. Materials Letters, 2020, 261: 126875. doi: 10.1016/j.matlet.2019.126875

    [10]

    WU B S, DONG H G, MA Y T, et al. Bonding mechanism of TC4 titanium alloy/T2 copper vacuum diffusion bonded joint with nickel as transition interlayer[J]. Journal of Manufacturing Processes, 2024, 131: 1309 − 1320. doi: 10.1016/j.jmapro.2024.09.099

    [11]

    YANG B, LI C, WANG X Y, et al. Enhanced Ti3AlC2/Zircaloy-4 interfacial bonding by using copper as an interlayer[J]. Materials Science & Engineering A, 2023, 871: 144914.

    [12]

    NIU S Y, WU X F, YANG Z W, et al. Interfacial microstructure and mechanical properties of Ti3SiC2 ceramic and TC11 alloy joint diffusion bonded with a Cu interlayer[J]. Ceramics International, 2021, 47(1): 130 − 137. doi: 10.1016/j.ceramint.2020.08.115

    [13]

    XUE H T, LI T, GUO W B, et al. Effect of graphite content on microstructure and properties of Al2O3 ceramic and 304 stainless steel brazed joints[J]. Materials Letters, 2022, 307: 131050. doi: 10.1016/j.matlet.2021.131050

    [14]

    JIA Y, LI T, CHEN X G, et al. Graphite-reinforced AgCuTi/Cu foam composite filler to braze Al2O3 ceramic and 304 stainless steel[J]. Ceramics International, 2023, 49(13): 21296 − 21307. doi: 10.1016/j.ceramint.2023.03.259

    [15]

    PENG Y, LI J L, SHI J M, et al. Microstructure and mechanical properties of Al2O3 ceramic and Ti2AlNb alloy joints brazed with Al2O3 particles reinforced Ag-Cu filler metal[J]. Vacuum, 2021, 192: 110430. doi: 10.1016/j.vacuum.2021.110430

    [16]

    FAN B B, XU J K, LEI H C, et al. Microstructure and mechanical properties of Al2O3/Cu joints brazed with Ag-Cu-Ti + Zn composite fillers[J]. Ceramics International, 2022, 48(13): 18551 − 18557. doi: 10.1016/j.ceramint.2022.03.125

    [17]

    DONG D, ZHU D D, LIANG Y F, et al. Microstructure, characterization of interfacial phases and mechanical properties of high Nb-TiAl/Al2O3 joints brazed by novel Nb particle-reinforced Ag–Cu filler alloy[J]. Journal of Materials Research and Technology, 2021, 11: 1942 − 1952. doi: 10.1016/j.jmrt.2021.02.048

    [18]

    DENG Y Q, SHENG G M, WANG F L, et al. Microstructure evolution and mechanical properties of transient liquid phase bonded Ti-6Al-4V joint with copper interlayer[J]. Materials & Design, 2016, 92: 1 − 7.

    [19]

    SONG X G, CAO J, CHEN H Y, et al. Contact reactive brazing of Ti53311S alloy using Cu foil as interlayer: Interfacial microstructure and joining properties[J]. Materials & Design, 2013, 46: 895 − 901.

    [20]

    WANG Y, XIA Y H, YANG Z W, et al. Interfacial microstructure and mechanical properties of TC4/Ti3SiC2 contact-reactive brazed joints using a Cu interlayer[J]. Ceramics International, 2018, 44(18): 22154 − 22164. doi: 10.1016/j.ceramint.2018.08.328

    [21]

    CAO J, ZHENG Z J, WU L Z, et al. Processing, microstructure and mechanical properties of vacuum-brazed Al2O3/Ti6Al4V joints[J]. Materials Science & Engineering A, 2012, 535: 62 − 67.

    [22]

    QIU Q W, WANG Y, YANG Z W, et al. Microstructure and mechanical properties of Al2O3 ceramic and Ti6Al4V alloy joint brazed with inactive Ag-Cu and Ag-Cu + B[J]. Journal of the European Ceramic Society, 2016, 36(8): 2067 − 2074. doi: 10.1016/j.jeurceramsoc.2016.02.033

    [23]

    ONG F S, TOBE H, SATO E, et al. Intermetallics evolution and fracture behavior of Nb interlayer inserted Si3N4/Ti joints brazed with AgCuTi filler[J]. Materials Science & Engineering A, 2019, 762: 138096.

    [24]

    WANG J L, YANG Z W, WANG Y, et al. Microstructural stability and mechanical properties of Al2O3/Kovar 4 J34 joint vacuum brazed using Ag-5Cu-1Al-1.25 Ti (wt%) filler metal[J]. Journal of Manufacturing Processes, 2021, 72: 553 − 564. doi: 10.1016/j.jmapro.2021.10.057

图(9)  /  表(1)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  1
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-20
  • 网络出版日期:  2025-06-03

目录

    /

    返回文章
    返回