Interfacial microstructure and mechanical properties of Al2O3 ceramics and TC4 alloys brazed with Cu foils
-
摘要:
采用Cu箔成功实现了Al2O3陶瓷与TC4合金之间钎焊连接,接头成形良好,无裂纹等明显缺陷. 系统研究了钎焊温度和保温时间对Al2O3/TC4接头显微组织和力学性能的影响规律,揭示了接头组织形成机理. 结果表明,在910 ℃,保温10 min的Al2O3/TC4接头的典型界面显微组织为Al2O3/Ti3(Cu,Al)3O/AlCu2Ti + (Ti,V)2(Cu,Al) + Ti(Cu,Al) + Ti3Cu4/α-Ti + β-Ti + Ti2Cu/TC4. 随着钎焊温度的升高,Ti3(Cu,Al)3O反应层厚度先增加后保持不变. 由于高温下接头中液态金属化合物逐渐溢出,接头整体宽度呈逐渐减小趋势,且Ti3Cu4连续成层,接头的抗剪强度先增大后减小. 随着保温时间的延长,接头整体宽度呈逐渐减小趋势,Ti3(Cu,Al)3O反应层的厚度逐渐增加,厚度过大的反应层对接头力学性能产生不利影响,接头的抗剪强度先增大后减小,在910 ℃下保温10 min时达到最大,抗剪强度为102 MPa.
Abstract:Successful brazing connection between Al2O3 ceramic and TC4 alloy was achieved using Cu foil, producing well-formed joints without obvious defects such as cracks. The effects of brazing temperature and holding time on the microstructure and mechanical properties of Al2O3/TC4 joints were systematically investigated, revealing the joint formation mechanism. The results show that the typical interfacial microstructure of Al2O3/TC4 joints brazed at 910 ℃ for 10 min was Al2O3/Ti3(Cu,Al)3O /AlCu2Ti + (Ti,V)2(Cu,Al) + Ti(Cu,Al) + Ti3Cu4/α-Ti + β-Ti + Ti2Cu/TC4. With increasing brazing temperature, the Ti3(Cu,Al)3O reaction layer first gradually thickened and then remained stable. Due to the gradual overflow of liquid metallic compounds at high temperatures, the overall joint width showed a decreasing trend, while Ti3Cu4 formed continuous layers. The shear strength of the joints first increased and then decreased. With prolonged holding time, the joint width gradually decreased and the thickness of Ti3(Cu,Al)3O reaction layer increased. The excessively thick reaction layer adversely affected the mechanical properties, causing the shear strength to first increase and then decrease, reaching a maximum value of 102 MPa at 910 ℃ for 10 min holding time.
-
Keywords:
- Al2O3 ceramics /
- TC4 alloy /
- Brazing /
- Shear strength
-
-
图 6 不同钎焊温度下保温10 min的界面组织
Figure 6. Interfacial microstructuresof joints for 10 min at different brazing temperatures. (a) 900 ℃; (b) local magnification of the Al2O3 side in Fig. 6(a); (c) local magnification of the TC4 side in Fig. 6(a); (d) 910 ℃; (e) local magnification of the Al2O3 side in Fig. 6(d); (f) local magnification of the TC4 side in Fig. 6(d); (g) 920 ℃; (h) local magnification of the Al2O3 side in Fig. 6(g); (i) local magnification of the TC4 side in Fig. 6(d)
图 8 不同保温时间910 ℃下的接头界面组织
Figure 8. Microstructure of joints at 910 ℃ with different holding times. (a) 5 min; (b) local magnification of the Al2O3 side in Fig. 8(a) ; (c) local magnification of the TC4 side in Fig. 8(a) ; (d) 15 min; (e) local magnification of the Al2O3 side in Fig. 8(d) ; (f) local magnification of the TC4 side in Fig. 8(d)
表 1 钎焊接头典型界面组织 EDS分析结果(原子分数,%)
Table 1 Brazed joints typical Interfacial microstructures EDS results
生成相 O Al Ti V Cu 可能相 B1 10.40 17.14 38.43 0.54 33.49 Ti3(Cu,Al)3O B2 0.97 22.88 21.36 0 54.79 AlCu2Ti B3 7.51 17.31 45.40 16.06 13.72 (Ti,V)2(Cu,Al) B4 3.77 8.76 51.20 1.78 34.49 Ti(Cu,Al) B5 — 3.09 41.88 1.09 53.94 Ti3Cu4 B6 — 17.06 78.68 2.72 1.54 α-Ti B7 — 9.21 67.86 17.40 5.53 β-Ti B8 5.72 8.74 60.32 0.67 24.55 Ti2Cu -
[1] ZHANG D K, WEI Z B, WANG K H, et al. Brazing of Al2O3-6061 aluminum alloy based on femtosecond laser surface groove structure[J]. Ceramics International, 2022, 48(24): 36953 − 36960. doi: 10.1016/j.ceramint.2022.08.263
[2] ZHANG Q, LU Y, WANG J, et al. Enhanced bonding of Al2O3/Al2O3 joints brazed by Ni50Ti50 master alloy interlayer[J]. Vacuum, 2021, 185: 110000. doi: 10.1016/j.vacuum.2020.110000
[3] JIANG N, SONG X Q, BIAN H, et al. Interfacial microstructure evolution and mechanical properties of Al2O3/Al2O3 joints brazed with Ti-Ni-Nb filler metal[J]. Journal of Materials Research and Technology, 2023, 24: 3901 − 3912. doi: 10.1016/j.jmrt.2023.04.088
[4] QIU D C, GAO Z, BA X L, et al. Vacuum brazing of SiCp/Al composites and TC4 titanium alloy: microstructure evolution and mechanical properties[J]. Vacuum, 2023, 218: 112662. doi: 10.1016/j.vacuum.2023.112662
[5] LIANG Y Z, DONG K W, YANG Y, et al. Vacuum brazing of YSZ ceramic and TC4 alloy with a Ti20Zr20Hf20Cu20Ni20 high entropy amorphous alloy[J]. Materials Science & Engineering A, 2022, 854: 143815.
[6] WANG W, LUO Z Y, WANG G, et al. Microstructure and mechanical properties of brazed In718/SiC joints with AgCuTi/Cu foam/AgCuTi composite filler[J]. Journal of Materials Research and Technology, 2023, 23: 4757 − 4765. doi: 10.1016/j.jmrt.2023.02.113
[7] ZHU Q Y, CAI Y Y, LIU Z, et al. Brazing Al2O3 to 4J42 using Ag-Cu-Ti/Cu/BNi-2 composite fillers with different thicknesses of Cu interlayer[J]. Ceramics International, 2023, 49(6): 9779 − 9788. doi: 10.1016/j.ceramint.2022.11.152
[8] ZHU Q Y, LI S H, HU K J, et al. Enhanced mechanical properties and thermal cycling stability of Al2O3-4J42 joints brazed using Ag-Cu-Ti/Cu/Ag-Cu composite filler[J]. Ceramics International, 2021, 47(21): 30247 − 30255. doi: 10.1016/j.ceramint.2021.07.204
[9] ZHANG J J, XIE D H, LI Q S, et al. Effect of holding time on the microstructure and strength of tungsten/steel joints by HIP diffusion bonded using a Cu interlayer[J]. Materials Letters, 2020, 261: 126875. doi: 10.1016/j.matlet.2019.126875
[10] WU B S, DONG H G, MA Y T, et al. Bonding mechanism of TC4 titanium alloy/T2 copper vacuum diffusion bonded joint with nickel as transition interlayer[J]. Journal of Manufacturing Processes, 2024, 131: 1309 − 1320. doi: 10.1016/j.jmapro.2024.09.099
[11] YANG B, LI C, WANG X Y, et al. Enhanced Ti3AlC2/Zircaloy-4 interfacial bonding by using copper as an interlayer[J]. Materials Science & Engineering A, 2023, 871: 144914.
[12] NIU S Y, WU X F, YANG Z W, et al. Interfacial microstructure and mechanical properties of Ti3SiC2 ceramic and TC11 alloy joint diffusion bonded with a Cu interlayer[J]. Ceramics International, 2021, 47(1): 130 − 137. doi: 10.1016/j.ceramint.2020.08.115
[13] XUE H T, LI T, GUO W B, et al. Effect of graphite content on microstructure and properties of Al2O3 ceramic and 304 stainless steel brazed joints[J]. Materials Letters, 2022, 307: 131050. doi: 10.1016/j.matlet.2021.131050
[14] JIA Y, LI T, CHEN X G, et al. Graphite-reinforced AgCuTi/Cu foam composite filler to braze Al2O3 ceramic and 304 stainless steel[J]. Ceramics International, 2023, 49(13): 21296 − 21307. doi: 10.1016/j.ceramint.2023.03.259
[15] PENG Y, LI J L, SHI J M, et al. Microstructure and mechanical properties of Al2O3 ceramic and Ti2AlNb alloy joints brazed with Al2O3 particles reinforced Ag-Cu filler metal[J]. Vacuum, 2021, 192: 110430. doi: 10.1016/j.vacuum.2021.110430
[16] FAN B B, XU J K, LEI H C, et al. Microstructure and mechanical properties of Al2O3/Cu joints brazed with Ag-Cu-Ti + Zn composite fillers[J]. Ceramics International, 2022, 48(13): 18551 − 18557. doi: 10.1016/j.ceramint.2022.03.125
[17] DONG D, ZHU D D, LIANG Y F, et al. Microstructure, characterization of interfacial phases and mechanical properties of high Nb-TiAl/Al2O3 joints brazed by novel Nb particle-reinforced Ag–Cu filler alloy[J]. Journal of Materials Research and Technology, 2021, 11: 1942 − 1952. doi: 10.1016/j.jmrt.2021.02.048
[18] DENG Y Q, SHENG G M, WANG F L, et al. Microstructure evolution and mechanical properties of transient liquid phase bonded Ti-6Al-4V joint with copper interlayer[J]. Materials & Design, 2016, 92: 1 − 7.
[19] SONG X G, CAO J, CHEN H Y, et al. Contact reactive brazing of Ti53311S alloy using Cu foil as interlayer: Interfacial microstructure and joining properties[J]. Materials & Design, 2013, 46: 895 − 901.
[20] WANG Y, XIA Y H, YANG Z W, et al. Interfacial microstructure and mechanical properties of TC4/Ti3SiC2 contact-reactive brazed joints using a Cu interlayer[J]. Ceramics International, 2018, 44(18): 22154 − 22164. doi: 10.1016/j.ceramint.2018.08.328
[21] CAO J, ZHENG Z J, WU L Z, et al. Processing, microstructure and mechanical properties of vacuum-brazed Al2O3/Ti6Al4V joints[J]. Materials Science & Engineering A, 2012, 535: 62 − 67.
[22] QIU Q W, WANG Y, YANG Z W, et al. Microstructure and mechanical properties of Al2O3 ceramic and Ti6Al4V alloy joint brazed with inactive Ag-Cu and Ag-Cu + B[J]. Journal of the European Ceramic Society, 2016, 36(8): 2067 − 2074. doi: 10.1016/j.jeurceramsoc.2016.02.033
[23] ONG F S, TOBE H, SATO E, et al. Intermetallics evolution and fracture behavior of Nb interlayer inserted Si3N4/Ti joints brazed with AgCuTi filler[J]. Materials Science & Engineering A, 2019, 762: 138096.
[24] WANG J L, YANG Z W, WANG Y, et al. Microstructural stability and mechanical properties of Al2O3/Kovar 4 J34 joint vacuum brazed using Ag-5Cu-1Al-1.25 Ti (wt%) filler metal[J]. Journal of Manufacturing Processes, 2021, 72: 553 − 564. doi: 10.1016/j.jmapro.2021.10.057