Quality control and reliability of PQFP device solder joints
-
摘要:
针对航空航天领域PQFP(plastic quad flat package)封装器件长期贮存可靠性问题,文中围绕焊点工艺参数优化及界面金属间化合物(interfacial intermetallic compounds,IMCs)演变规律展开系统性研究.通过光镜检测、力学性能测试与扫描电镜分析,揭示了焊缝高度与钎料量对焊点质量的影响机制.结果表明,钎料量增加使润湿高度提升(0.05
0 ~ 0.099 3 mm3为理论最佳范围),而焊缝高度增大则削弱润湿效果,0.12 mm钢网与0.05 mm焊缝高度组合可实现桥联率最低、抗拉强度最优的焊接质量.通过高温加速老化试验发现,Cu焊盘侧IMC由Cu6Sn5/Cu3Sn构成且呈扇贝状向平直状演变,Ni阻挡层使引脚侧(Cu,Ni)6Sn5层厚度降低.基于Fick扩散定律建立的IMC生长动力学模型表明,双侧IMC层厚符合抛物线生长规律,活化能分别为20.67 kJ/mol(Cu侧)和52.79 kJ/mol(Ni侧).以IMC临界厚度3.5 μm为失效判据,推算出器件焊点在23 ℃贮存寿命可达27.5年,研究成果为航天电子装备的长寿命可靠性设计与工艺优化提供了理论依据和数据支撑.Abstract:In view of the long-term storage reliability issues of PQFP devices in aerospace applications, the optimization of solder joint process parameters and the evolution mechanism of IMCs were systematically investigated. Through optical microscopy, mechanical property testing, and scanning electron microscopy analysis, the influence mechanisms of weld height and soldering alloy volume on solder joint quality were revealed. The results show that increasing soldering alloy volume enhances wetting height (the theoretical optimal range is 0.05 ~ 0.099 3 mm3), while greater weld height diminishes wetting effects. The combination of a 0.12 mm steel mesh and 0.05 mm weld height achieves the lowest bridging rate and optimal tensile strength. High-temperature accelerated aging experiments demonstrate that Cu6Sn5/Cu3Sn IMCs on the Cu bonding pad side evolve from a scalloped to planar morphology, while the Ni barrier layer reduces the thickness of (Cu,Ni)6Sn5 IMCs on the lead side. A kinetics model for IMC growth, based on Fick’s diffusion law, indicates parabolic growth behavior for bilateral IMC layers, with activation energies of 20.67 kJ/mol (Cu side) and 52.79 kJ/mol (Ni side). By using a critical IMC thickness of 3.5 μm as the failure criterion, the estimated storage life of solder joints at 23 ℃ reaches 27.5 years. This research provides theoretical foundations and data support for the long-term reliability design and process optimization of aerospace electronic systems.
-
-
图 5 150 ℃不同老化时间下焊点微观组织形貌(0.02 mm焊缝高度)
Figure 5. Microstructure morphology of solder joints at different aging times at 150 ℃ (0.02 mm stand-off height). (a) overall morphology after 4 days of thermal aging; (b) enlarged image of zone A; (c)enlarged image of zone B; (d) overall morphology after 9 days of thermal aging; (e) enlarged image of zone A; (f) enlarged image of zone B; (g) overall morphology after 16 days of thermal aging; (h) enlarged image of zone A; (i)enlarged image of zone B; (j) overall morphology after 16 days of thermal aging; (k) enlarged image of zone A; (l) enlarged image of zone B
图 6 150 ℃老化25天焊点微观组织形貌
Figure 6. Microstructure morphology of solder joints after 25 days of aging at 150 ℃. (a) overall morphology of solder joints (0.05 mm stand-off height); (b) enlarged image of zone A; (c) overall morphology of solder joints (0.10 mm stand-off height); (d) enlarged image of zone B
表 1 PQFP引脚尺寸
Table 1 PQFP lead size
名称 规格 d/mm 名称 规格 d/mm 引脚布局 11 × 4(个) 引脚宽度B 0.315 引脚厚度σ 0.145 引脚间距P 0.65 表 2 工艺参数设计
Table 2 Process parameter design
工艺编号 钢网厚度Th/mm 焊缝高度H/mm 0.09~0.02 0.09 0.02 0.09~0.05 0.09 0.05 0.09~0.10 0.09 0.10 0.12~0.02 0.12 0.02 0.12~0.05 0.12 0.05 0.12~0.10 0.12 0.10 0.15~0.02 0.15 0.02 0.15~0.05 0.15 0.05 0.15~0.10 0.15 0.10 -
[1] 黄姣英, 曹阳, 高成. 微电子封装焊点疲劳失效研究综述[J]. 电子元件与材料, 2020, 39(10): 11 − 16. HUANG Jiaoying, CAO Yang, GAO Cheng, et al. A review of fatigue failure of microelectronic packaging solder joints.[J]. Electronic Components and Materials, 2020, 39(10): 11 − 16.
[2] 中国航天工业总公司. 航天电子电气产品安装通用技术要求: QJ 165B—2014. [S]. 北京, 国家国防科技工业局, 2014. China national aerospace industry corporation. general technical requirements for aerospace electronic and electrical product assembly: QJ 165B—2014. [S]. Beijing, State Administration of National Defence Science and Technology Industry, 2014.
[3] 王国忠, 王春青, 钱乙余. SMT焊点元件与基板间隙的预测及其对焊点三维形态的影响[J]. 电子工艺技术, 1997(2): 18 − 20. WANG Guozhong, WANG Chunqing, Qian Yiyu. Prediction of component-substrate gap in SMT solder joints and its effecton the three-dimensional morphology of solder joints[J]. Electronic Process Technology, 1997(2): 18 − 20.
[4] 何敏, 邓梦, 庄成波. 焊点形态对表贴引脚元器件振动应力的影响[J]. 电子元件与材料, 2021, 40(8): 800 − 807. HE Min, DENG Meng, ZHUANG Chengbo. Influence of solder joint morphology on vibration stress of surface-mounted pincomponents[J]. Electronic Components and Materials, 2021, 40(8): 800 − 807.
[5] HUBBARD K, HU M, AHMAD M. Solder joint shape prediction using a modified perzyna viscoplastic model[J]. Journal of Electronic Packaging, 2004, 127(3): 290 − 298.
[6] ADETUNJI O R, ASHIMOLOWO R A, AIYEDUN P O, et al. Tensile, hardness and microstructural properties of Sn–Pb solder alloys[J]. Mater Today Proc, 2021, 44: 321.
[7] QIAO Y Y, MA H T, YU F Y, et al. Quasi-in-situobservation ondiffusion anisotropy dominated asymmetrical growth of Cu–Sn IMCs under temperature gradient[J]. Acta Materiali, 2021, 217(9): 117168.
[8] 田德文. 熔滴与平面和角形结构碰撞的动态行为及形态[D]. 哈尔滨: 哈尔滨工业大学, 2011. TIAN Dewen. Dynamic behavior and sharp of molten droplet impact on planar and corner structures[D]. Harbin: Harbin Tnstiture of Technology, 2011.
[9] WANG J N, CHEN J S, ZHANG Z Y, et al. Effects of doping trace Ni element on interfacial behavior of Sn/Ni (polycrystal/singlecrystal) joints[J]. Soldering & Surface MountTechnology, 2022, 34(2): 124 − 133.
[10] GEORGE Vakanas, NELE Moelans, MASANORI Kajihara, et al. Formation of compounds and Kirkendall vacancy in the Cu–Sn system[J]. Microelectronic Engineering, 2014, 40(5): 133 − 137.
[11] GRÉTA Gergely, ZOLTÁN Gácsi. Growth kinetics and IMCs layer analysis of SAC305 solder with the reinforcement of SiC during the isothermal aging condition.[J]. Journal of Materials Research and Technology, 2023, 24(6): 8320 − 8331.
[12] WANG Y, PENG X W, HUANG J H, et al. Studies of Cu-Sn interdiffusion coefficients in Cu3Sn and Cu6Sn5 based on the growth kinetics[J]. Scripta Materialia, 2021, 204(11): 114138 − 114144.
[13] ZHAO D D, GUO W J, SHANG Z C, et al. The growth behavior and kinetics of intermetallic compounds in Cu–Al interface at 600 ℃–800 ℃[J]. Tntermetallics, 2024, 168(5): 108244.
[14] 张贺, 冯佳运, 丛森,等. 62Sn36Pb2Ag组装焊点长期贮存界面化合物生长动力学及寿命预测[J]. 工程科学学报, 2023, 3(45): 400 − 406. ZHANG He, FENG Jiayun, CONG Sen, et al. Long-term storage life prediction and growth kinetics of intermetallic compounds in 62Sn36Pb2Ag solder joints[J]. Chinese Journal of Engineering, 2023, 3(45): 400 − 406.
-
期刊类型引用(1)
1. 王守明,高振坤,陈建华,丁韦,许蕊,刘国庆,谭锦红. U71Mn钢闪光-摩擦复合焊接头组织及性能研究. 金属加工(热加工). 2025(04): 67-73+78 . 百度学术
其他类型引用(0)