高级检索

钢/镍异种金属交织电弧增材制造成形机理

Formation mechanism of the steel/nickel heterogeneous metal interwoven by the arc additive manufacturing process

  • 摘要: 为了提升钢/镍异种金属管状结构(内壁为镍,外壁为钢)整体增材制造成形强度,采用电弧双丝增材制造技术,提出了由外向内、自下而上的双丝交织路径. 利用红外热成像仪记录沉积过程温度场,利用背散射衍射(EBSD)对金相试样界面展开分析. 结果表明,整体结构无明显裂纹及变形等缺陷;内层与外层在沉积过程中温度场变化数值较小,其对连续几何成形精度影响可基本忽略;钢与镍在界面处形成交错编织的形貌,两侧晶粒无明显的择优取向,两种金属以互溶的形式存在,交织界面存在明显的局部应力集中,晶粒未发生明显的再结晶现象且结构形式稳定. 文中提出的交织路径可实现钢/镍异种金属界面固溶强化及界面自锁,为高性能异种金属结构增材制造提供解决思路.

     

    Abstract: To enhance the overall forming strength of steel/nickel tubular structures (Ni-clad inner wall and steel-shell outer wall), this study employed double-wire arc additive manufacturing technology and proposed an outward-inward and bottom-up double-wire interwoven path strategy. The deposition temperature field was monitored using infrared thermal imaging, while electron backscatter diffraction (EBSD) was applied to analyze the interface of metallographic specimens. Results showed defect-free formation with no apparent cracks or deformations in the integrated structure. Both inner and outer layers exhibited minimal temperature variations during deposition, showing negligible impact on geometric forming accuracy. The steel-nickel interface presented an interwoven morphology with non-preferentially oriented grains on both sides, existing as a mutual solid solution. Localized stress concentration was observed at the interwoven interface, where grains maintained stable configurations without significant recrystallization. This proposed interwoven path strategy achieves Fe/Ni interface solid solution strengthening and mechanical interlocking, providing a novel approach for high-performance additive manufacturing of dissimilar metal structures.

     

/

返回文章
返回