高级检索

钢/镍异种金属交织电弧增材制造成形机理

张本顺, 张政, 孙宏伟, 苗玉刚, 赵羽扬, 刘雨

张本顺, 张政, 孙宏伟, 苗玉刚, 赵羽扬, 刘雨. 钢/镍异种金属交织电弧增材制造成形机理[J]. 焊接学报, 2025, 46(5): 81-85, 104. DOI: 10.12073/j.hjxb.20240321003
引用本文: 张本顺, 张政, 孙宏伟, 苗玉刚, 赵羽扬, 刘雨. 钢/镍异种金属交织电弧增材制造成形机理[J]. 焊接学报, 2025, 46(5): 81-85, 104. DOI: 10.12073/j.hjxb.20240321003
ZHANG Benshun, ZHANG Zheng, SUN Hongwei, MIAO Yugang, ZHAO Yuyang, LIU Yu. Formation mechanism of the steel/nickel heterogeneous metal interwoven by the arc additive manufacturing process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(5): 81-85, 104. DOI: 10.12073/j.hjxb.20240321003
Citation: ZHANG Benshun, ZHANG Zheng, SUN Hongwei, MIAO Yugang, ZHAO Yuyang, LIU Yu. Formation mechanism of the steel/nickel heterogeneous metal interwoven by the arc additive manufacturing process[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(5): 81-85, 104. DOI: 10.12073/j.hjxb.20240321003

钢/镍异种金属交织电弧增材制造成形机理

基金项目: 

国防基础科研项目(JCKY2023206C013,JCKY2023604C004)

详细信息
    作者简介:

    张本顺,硕士;主要研究方向为机器人自动化焊接和异种金属增材制造;Email: besenzhang@163.com

    通讯作者:

    苗玉刚,博士,教授; Email: miao0701@163.com.

  • 中图分类号: TG 444.4

Formation mechanism of the steel/nickel heterogeneous metal interwoven by the arc additive manufacturing process

  • 摘要:

    为了提升钢/镍异种金属管状结构(内壁为镍,外壁为钢)整体增材制造成形强度,采用电弧双丝增材制造技术,提出了由外向内、自下而上的双丝交织路径. 利用红外热成像仪记录沉积过程温度场,利用背散射衍射(EBSD)对金相试样界面展开分析. 结果表明,整体结构无明显裂纹及变形等缺陷;内层与外层在沉积过程中温度场变化数值较小,其对连续几何成形精度影响可基本忽略;钢与镍在界面处形成交错编织的形貌,两侧晶粒无明显的择优取向,两种金属以互溶的形式存在,交织界面存在明显的局部应力集中,晶粒未发生明显的再结晶现象且结构形式稳定. 文中提出的交织路径可实现钢/镍异种金属界面固溶强化及界面自锁,为高性能异种金属结构增材制造提供解决思路.

    Abstract:

    To enhance the overall forming strength of steel/nickel tubular structures (Ni-clad inner wall and steel-shell outer wall), this study employed double-wire arc additive manufacturing technology and proposed an outward-inward and bottom-up double-wire interwoven path strategy. The deposition temperature field was monitored using infrared thermal imaging, while electron backscatter diffraction (EBSD) was applied to analyze the interface of metallographic specimens. Results showed defect-free formation with no apparent cracks or deformations in the integrated structure. Both inner and outer layers exhibited minimal temperature variations during deposition, showing negligible impact on geometric forming accuracy. The steel-nickel interface presented an interwoven morphology with non-preferentially oriented grains on both sides, existing as a mutual solid solution. Localized stress concentration was observed at the interwoven interface, where grains maintained stable configurations without significant recrystallization. This proposed interwoven path strategy achieves Fe/Ni interface solid solution strengthening and mechanical interlocking, providing a novel approach for high-performance additive manufacturing of dissimilar metal structures.

  • 图  1   试验设备

    Figure  1.   Experiment system

    图  2   沉积路径

    Figure  2.   Deposition path

    图  3   钢/镍异种金属交织电弧增材制造成形部件

    Figure  3.   Fe/Ni dissimilar component fabricated using wire arc additive manufacturing with interweave deposition path. (a) first layer; (b) outside appearance; (c) top of component; (d) side of component

    图  4   沉积第40层温度场分布

    Figure  4.   Temperature distribution during 40th deposition

    图  5   不同区域微观组织形貌

    Figure  5.   Microstructure evolution at different locstion

    图  6   界面微观组织形貌

    Figure  6.   Microstructure morphology at interface

    图  7   界面晶界分布

    Figure  7.   Grain boundaries at interface. (a) interwoven interface; (b) HAGBs and LAGBs

    图  8   界面织构取向

    Figure  8.   Microstructural orientation at interface

    图  9   界面局部应力分布

    Figure  9.   Interface local misorientation distribution. (a) KAM; (b) local misorientation

    图  10   界面晶粒分布

    Figure  10.   Interface grain distribution. (a) recrystallization texture; (b) grain state

    表  1   工艺参数

    Table  1   Process parameters

    材料 焊接电流I/A 焊接电压U/V 焊接速度v/(mm·s−1) 送丝速度vs/(m·min−1) 弧长修正 电弧挺度
    ErNiCrMo-3 150 20.4 4.2 5.2 0 +1
    316不锈钢 160 22.8 5.0 7.6 +2 −1
    下载: 导出CSV
  • [1] 张秉刚, 王一帆, 王厚勤. 先进材料与异种材料电子束焊接研究进展[J]. 焊接学报, 2022, 43(8): 95 − 101. doi: 10.12073/j.hjxb.20220506001

    ZHANG Binggang, WANG Yifan, WANG Houqin. Research status and development trend of electron beam welding for advanced materials and dissimilar materials[J]. Transactions of the China Welding Institution, 2022, 43(8): 95 − 101 doi: 10.12073/j.hjxb.20220506001

    [2]

    BANDYOPADHYAY A, ZHANG Y, ONUIKE B, et al. Additve manufacturing of bimetallic structures[J]. Virtual and Physical Prototyping, 2022, 17(2): 256 − 294. doi: 10.1080/17452759.2022.2040738

    [3]

    GIANNAKOPOULOS A, SURESH S, FINOT M, et al. A three-dimensional analysis of fretting fatigue[J]. Acta Materialia, 1995, 43(1): 1335 − 1354.

    [4] 武靖伟, 王有银, 厚喜荣, 等. N06200镍基合金与S32168不锈钢界面金属间化合物的生长行为[J]. 焊接学报, 2024, 45(2): 121 − 128.

    WU Jingwei, WANG Youyin, HOU Xirong, et al. Growth behavior of inter metallic compounds at N06200 nickel alloy and S32168 stainless steel[J]. Transactions of the China Welding Institution, 2024, 45(2): 121 − 128.

    [5] 石常亮, 何鹏, 冯吉才, 等. 铝/镀锌钢板CMT熔钎焊界面区组织与接头性能[J]. 焊接学报, 2006, 27(12): 61 − 64.

    SHI Changliang, HE Peng, FENG Jicai, et al. Interface microstructure and mechanical property of CMT welding-brazed joint between aluminum and galvanized steel sheet[J]. Transactions of the China Welding Institution, 2006, 27(12): 61 − 64.

    [6]

    HERZOG D, SEYDA V, WYCISK E, et al. Additive Manufacturing of metals[J]. Acta Materialia, 2016, 117: 371 − 392. doi: 10.1016/j.actamat.2016.07.019

    [7] 汪殿龙, 张志洋, 梁志敏, 等. 交流CMT动态电弧特征及熔滴过渡行为分析[J]. 焊接学报, 2014, 35(3): 6 − 10.

    WANG Dianlong, ZHANG Zhiyang, LIANG Zhimin, et al. Analysis of dynamic arc characteristics and melt transfer behavior of AC CMT[J]. Transactions of the China Welding Institution, 2014, 35(3): 6 − 10.

    [8]

    ABE T, SASAHARA H. Dissimilar metal deposition with a stainless steel and nickel-based alloy using wire and arc-based additive manufacturing[J]. Precision Engineering, 2016, 45: 387 − 395. doi: 10.1016/j.precisioneng.2016.03.016

    [9]

    SQUIRES L, ROBERTS E, BANDYOPADHYAY A. Radial bimetallic structures via wire arc directed energy deposition-based additive manufacturing[J]. Nature Communications, 2023, 14(3544): 1 − 11. doi: 10.1038/s41467-023-39230-w

    [10]

    WU B, QIU Z, PAN Z, et al. Enhanced interface strength in steel-nickel bimetallic component fabricated using wire arc additive manufacturing with interweaving deposition strategy[J]. Journal of Materials Science & Technology, 2020, 52: 226 − 234.

    [11]

    ZHANG Y, MAO K, LEIGH S, et al. A parametric study of 3D printed polymer gears[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107: 4481 − 4492. doi: 10.1007/s00170-020-05270-5

  • 期刊类型引用(0)

    其他类型引用(5)

图(10)  /  表(1)
计量
  • 文章访问数:  53
  • HTML全文浏览量:  6
  • PDF下载量:  18
  • 被引次数: 5
出版历程
  • 收稿日期:  2024-03-20
  • 网络出版日期:  2025-05-21
  • 刊出日期:  2025-05-24

目录

    /

    返回文章
    返回