Reliability optimization of solder joints in large-sized COTS devices based on solder mask layer design
-
摘要:
高可靠应用领域常常需要专用器件,其迭代更新较慢且成本较高,商用现货(commercial off-the-shelf ,COTS)器件更新速度快且质量一致性较好,然而在专用领域的适用性和可靠性尚未得到验证,为此,提出了一种基于阻焊层设计的大尺寸COTS器件焊点可靠性方法.首先,通过焊点形态仿真获得了不同阻焊层参数下的焊点形态,然后对不同参数下的器件进行板级热循环仿真.结果表明,阻焊层设计会影响焊点形态,从而影响在热循环过程中的应力—应变状态,通过计算焊点预期寿命得到优化参数,优化后的焊点预测寿命提高了118%,证明了从封装设计角度提高COTS器件焊点可靠性的可行性,推动了COTS器件在高可靠性领域的应用进程.
Abstract:High reliability application fields often require specialized devices, which have slower iteration updates and higher costs. COTS devices have a fast update speed and good quality consistency, but their applicability and reliability in specialized fields have not been fully verified. Therefore, a reliability method for large-size COTS device solder joints based on solder mask layer design is proposed. Firstly, solder joint morphology simulation is used to obtain solder joint morphology under different solder mask layer parameters; Furthermore, plate level thermal cycling simulations were conducted on devices with different parameters. The results showed that the design of the solder mask layer would affect the shape of the solder joints, thereby affecting their stress-strain state during the thermal cycling process. The optimized parameters were obtained by calculating the expected lifespan of the solder joints, and the predicted lifespan of the optimized solder joints was increased by 118%. This proved the feasibility of improving the reliability of COTS device solder joints from the perspective of packaging design, and promoted the application process of COTS devices in the field of high reliability.
-
-
表 1 焊点形态仿真中的阻焊层参数
Table 1 Parameters of solder mask layer in solder joint shape simulation
参数 取值1 取值2 取值3 取值4 取值5 取值6 阻焊层与下焊盘间距d/μm 50 60 70 80 90 100 阻焊层厚度h/μm 20 28 41 54 67 80 表 2 影响焊点形态的阻焊层参数组合
Table 2 Parameters of solder mask layer affecting solder joint shapes
参数序号 阻焊层厚度
h/mm阻焊层与下焊盘间距
d/mm1 20 0.07 2 54 0.05 3 67 0.05 4 80 0.05 5 67 0.06 6 80 0.06 7 67 0.07 8 80 0.07 9 80 0.08 表 3 焊接工艺参数
Table 3 Welding experiment paraments
参数序号 塑性应变ε 热循环寿命Nf 1 0.011 584 9 2 342 2 0.011 618 0 2 326 3 0.012 935 8 1 792 4 0.014 569 5 1 342 5 0.011 624 8 2 323 6 0.015 993 9 1 070 7 0.012 744 7 1 858 8 0.012 442 6 1 969 9 0.013 557 2 1 599 -
[1] DI R R, BRANDOLINI E, SPARVIERI G, et al. Best practices on adopting open-source and commercial low-cost devices in small satellites missions[J]. Acta Astronautic, 2023, 211: 37 − 48. doi: 10.1016/j.actaastro.2023.06.001
[2] MATTHEWS P. The great debate: should COTS components be used in space[J]. Microwave Journal, 2022, 65(10): 80.
[3] BUDROWEIT J, PATSCHEIDER H. Risk assessment for the use of COTS devices in space systems under consideration of radiation effects[J]. Electronics, 2021, 9(10): 1008.
[4] ELBURN E, SOOD B, DAS D, et al. Utilization of data and models for COTS part reliability assessment[C]//2019 Annual Reliability and Maintainability Symposium(RAMS), 2019: 751 − 758.
[5] CHAN S. Reliability evaluation of COTS integrated circuits for military and space applications[J]. Journal of Korean Society Aeronautical and Space Sciences, 2012, 40(12): 1093 − 1098.
[6] 杨东升, 张贺, 冯佳运, 等. 电子封装微纳连接技术及失效行为研究进展[J]. 焊接学报, 2022, 43(11): 126 − 136. YANG Dongsheng, ZHANG He, FENG Jiayun, et al. Research progress on micro nano connection technology and failure behavior in electronic packaging[J]. Transactions of the China Welding Institution, 2022, 43(11): 126 − 136.
[7] XIAN J W. Cu6Sn5 crystal growth mechanisms during solidification of electronic interconnections[J]. Acta Materialia, 2017, 126: 540 − 551. doi: 10.1016/j.actamat.2016.12.043
[8] BAI T, QIAO Y, WANG X, et al. Finite element method modeling of temperature gradient-induced Cu atomic thermo migration in Cu/Sn/Cu micro solder joint[J]. Microelectronics Reliability, 2022, 129: 114479. doi: 10.1016/j.microrel.2022.114479
[9] FANG Y. Coupling effects of mechanical vibrations and thermal cycling on reliability of CCGA solder joints[J]. Microelectronics Reliability, 2015, 55(11): 2396 − 2402. doi: 10.1016/j.microrel.2015.06.118
[10] MAO M, WANG W, LU C, et al. Machine learning for board-level drop response of BGA packaging structure[J]. Microelectronics Reliability, 2022, 134: 114553. doi: 10.1016/j.microrel.2022.114553
[11] LIU Y, YAO C, SUN F, et al. Numerical simulation of reliability of 2.5D/3D package interconnect structure under temperature cyclic load[J]. Microelectronics Reliability, 2021, 125: 114343. doi: 10.1016/j.microrel.2021.114343
[12] SINGH B, MENEZES G, MCCANN S, et al. Board-level thermal cycling and drop-test reliability of large, ultrathin glass BGA packages for smart mobile applications[J]. IEEE Transactions on Components Packaging and Manufacturing Technology, 2017, 7(5): 726 − 733. doi: 10.1109/TCPMT.2017.2684464
[13] LI G, FENG J, TIAN Yanhong, et al. Finite element analysis of underfill effect on the CBGA package reliability under thermal cycling[C]//International Conference on Electronic Packaging Technology (ICEPT), 2022.
[14] 撒子成, 王尚, 冯佳运, 等. SiP器件组装焊点形态预测及其随机振动可靠性仿真研究[J]. 机械工程学报, 2022, 58(2): 276 − 283. SA Zicheng, WANG Shang, FENG Jiayun, et al. Simulation of SiP solder joint geometry and random vibration reliability prediction[J]. Chinese Journal of Mechanical Engineering, 2022, 58(2): 276 − 283.
[15] LI G, WANG S, TIAN Y, et al. Solder joint shape optimization and thermal-mechanical reliability improvement for microwave RF coaxial connectors[J]. Microelectronics Reliability, 2024, 154: 115345. doi: 10.1016/j.microrel.2024.115345
[16] 杨雪霞, 孙勤润, 张伟伟. 基于响应曲面法的BGA焊点结构参数优化设计[J]. 焊接学报, 2023, 44(11): 36 − 41. doi: 10.12073/j.hjxb.20220810002 YANG Xuexia, SUN Qinrun, ZHANG Weiwei. Optimization design of BGA solder joint structure parameters based on response surface methodology[J]. Transactions of the China Welding Institution, 2023, 44(11): 36 − 41. doi: 10.12073/j.hjxb.20220810002
[17] WU W, LI G, WANG S, et al. Study on the solder joint reliability of new diamond chip resistors for power devices[J]. Coatings, 2023, 13(4): 748. doi: 10.3390/coatings13040748
[18] PECHT M. Creep fatigue models of solder joints: A critical review[J]. Microelectronics and Reliability, 2016, 59: 1 − 12. doi: 10.1016/j.microrel.2016.01.013
[19] LEE W W, NGUYEN L T, SELVADURAY G S. Solder joint fatigue models: review and applicability to chip scale packages[J]. Microelectronics Reliability, 2000, 40(2): 231 − 244. doi: 10.1016/S0026-2714(99)00061-X