高级检索

基于阻焊层设计的大尺寸COTS器件焊点可靠性优化

李庚, 王尚, 孙宇欣, 孟俊豪, 吴文志, 田艳红

李庚, 王尚, 孙宇欣, 孟俊豪, 吴文志, 田艳红. 基于阻焊层设计的大尺寸COTS器件焊点可靠性优化[J]. 焊接学报, 2025, 46(5): 35-41. DOI: 10.12073/j.hjxb.20240319003
引用本文: 李庚, 王尚, 孙宇欣, 孟俊豪, 吴文志, 田艳红. 基于阻焊层设计的大尺寸COTS器件焊点可靠性优化[J]. 焊接学报, 2025, 46(5): 35-41. DOI: 10.12073/j.hjxb.20240319003
LI Geng, WANG Shang, SUN Yuxin, MENG Junhao, WU Wenzhi, TIAN Yanhong. Reliability optimization of solder joints in large-sized COTS devices based on solder mask layer design[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(5): 35-41. DOI: 10.12073/j.hjxb.20240319003
Citation: LI Geng, WANG Shang, SUN Yuxin, MENG Junhao, WU Wenzhi, TIAN Yanhong. Reliability optimization of solder joints in large-sized COTS devices based on solder mask layer design[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(5): 35-41. DOI: 10.12073/j.hjxb.20240319003

基于阻焊层设计的大尺寸COTS器件焊点可靠性优化

基金项目: 

国家自然科学基金资助项目(U2241223);黑龙江省“头雁”团队经费资助项目(HITTY-20190013).

详细信息
    作者简介:

    李庚,博士研究生;主要研究方向为电子封装可靠性与印刷电子;Email: li-geng@hit.edu.cn

    通讯作者:

    田艳红,博士,教授;Email: tianyh@hit.edu.cn.

  • 中图分类号: TG 454

Reliability optimization of solder joints in large-sized COTS devices based on solder mask layer design

  • 摘要:

    高可靠应用领域常常需要专用器件,其迭代更新较慢且成本较高,商用现货(commercial off-the-shelf ,COTS)器件更新速度快且质量一致性较好,然而在专用领域的适用性和可靠性尚未得到验证,为此,提出了一种基于阻焊层设计的大尺寸COTS器件焊点可靠性方法.首先,通过焊点形态仿真获得了不同阻焊层参数下的焊点形态,然后对不同参数下的器件进行板级热循环仿真.结果表明,阻焊层设计会影响焊点形态,从而影响在热循环过程中的应力—应变状态,通过计算焊点预期寿命得到优化参数,优化后的焊点预测寿命提高了118%,证明了从封装设计角度提高COTS器件焊点可靠性的可行性,推动了COTS器件在高可靠性领域的应用进程.

    Abstract:

    High reliability application fields often require specialized devices, which have slower iteration updates and higher costs. COTS devices have a fast update speed and good quality consistency, but their applicability and reliability in specialized fields have not been fully verified. Therefore, a reliability method for large-size COTS device solder joints based on solder mask layer design is proposed. Firstly, solder joint morphology simulation is used to obtain solder joint morphology under different solder mask layer parameters; Furthermore, plate level thermal cycling simulations were conducted on devices with different parameters. The results showed that the design of the solder mask layer would affect the shape of the solder joints, thereby affecting their stress-strain state during the thermal cycling process. The optimized parameters were obtained by calculating the expected lifespan of the solder joints, and the predicted lifespan of the optimized solder joints was increased by 118%. This proved the feasibility of improving the reliability of COTS device solder joints from the perspective of packaging design, and promoted the application process of COTS devices in the field of high reliability.

  • 图  1   COTS器件示意图(mm)

    Figure  1.   Schematic of COTS device. (a) size of device; (b) cross-sectional morphology

    图  2   有限元模型

    Figure  2.   Model of finite element analysis

    图  3   阻焊层对焊点形态的影响

    Figure  3.   Effect of solder mask layer on solder joint shapes. (a) effect; (b) no effect

    图  4   焊点形态仿真的试验验证

    Figure  4.   Verification of solder joint shape simulation

    图  5   不同阻焊层参数下的焊点形态(mm)

    Figure  5.   Solder joint shapes under different parameters of solder mask layer

    图  6   热循环过程中的温度分布

    Figure  6.   Temperature distribution of solder joints with thermal cycling. (a) PCB; (b) solder joint

    图  7   焊点应力分布

    Figure  7.   Stress distribution of solder joints

    图  8   热循环过程中的焊点最大应力

    Figure  8.   Maximum stress of solder joints with thermal cycling

    图  9   热循环过程中的焊点塑性应变

    Figure  9.   Plastic strain of solder joints with thermal cycling

    图  10   500个温度循环后的焊点SEM

    Figure  10.   SEM of solder joints after 500 thermal cycles. (a) without the influence of solder mask; (b) with the influence of solder mask

    表  1   焊点形态仿真中的阻焊层参数

    Table  1   Parameters of solder mask layer in solder joint shape simulation

    参数 取值1 取值2 取值3 取值4 取值5 取值6
    阻焊层与下焊盘间距d/μm 50 60 70 80 90 100
    阻焊层厚度h/μm 20 28 41 54 67 80
    下载: 导出CSV

    表  2   影响焊点形态的阻焊层参数组合

    Table  2   Parameters of solder mask layer affecting solder joint shapes

    参数序号 阻焊层厚度
    h/mm
    阻焊层与下焊盘间距
    d/mm
    1 20 0.07
    2 54 0.05
    3 67 0.05
    4 80 0.05
    5 67 0.06
    6 80 0.06
    7 67 0.07
    8 80 0.07
    9 80 0.08
    下载: 导出CSV

    表  3   焊接工艺参数

    Table  3   Welding experiment paraments

    参数序号塑性应变ε热循环寿命Nf
    10.011 584 92 342
    20.011 618 02 326
    30.012 935 81 792
    40.014 569 51 342
    50.011 624 82 323
    60.015 993 91 070
    70.012 744 71 858
    80.012 442 61 969
    90.013 557 21 599
    下载: 导出CSV
  • [1]

    DI R R, BRANDOLINI E, SPARVIERI G, et al. Best practices on adopting open-source and commercial low-cost devices in small satellites missions[J]. Acta Astronautic, 2023, 211: 37 − 48. doi: 10.1016/j.actaastro.2023.06.001

    [2]

    MATTHEWS P. The great debate: should COTS components be used in space[J]. Microwave Journal, 2022, 65(10): 80.

    [3]

    BUDROWEIT J, PATSCHEIDER H. Risk assessment for the use of COTS devices in space systems under consideration of radiation effects[J]. Electronics, 2021, 9(10): 1008.

    [4]

    ELBURN E, SOOD B, DAS D, et al. Utilization of data and models for COTS part reliability assessment[C]//2019 Annual Reliability and Maintainability Symposium(RAMS), 2019: 751 − 758.

    [5]

    CHAN S. Reliability evaluation of COTS integrated circuits for military and space applications[J]. Journal of Korean Society Aeronautical and Space Sciences, 2012, 40(12): 1093 − 1098.

    [6] 杨东升, 张贺, 冯佳运, 等. 电子封装微纳连接技术及失效行为研究进展[J]. 焊接学报, 2022, 43(11): 126 − 136.

    YANG Dongsheng, ZHANG He, FENG Jiayun, et al. Research progress on micro nano connection technology and failure behavior in electronic packaging[J]. Transactions of the China Welding Institution, 2022, 43(11): 126 − 136.

    [7]

    XIAN J W. Cu6Sn5 crystal growth mechanisms during solidification of electronic interconnections[J]. Acta Materialia, 2017, 126: 540 − 551. doi: 10.1016/j.actamat.2016.12.043

    [8]

    BAI T, QIAO Y, WANG X, et al. Finite element method modeling of temperature gradient-induced Cu atomic thermo migration in Cu/Sn/Cu micro solder joint[J]. Microelectronics Reliability, 2022, 129: 114479. doi: 10.1016/j.microrel.2022.114479

    [9]

    FANG Y. Coupling effects of mechanical vibrations and thermal cycling on reliability of CCGA solder joints[J]. Microelectronics Reliability, 2015, 55(11): 2396 − 2402. doi: 10.1016/j.microrel.2015.06.118

    [10]

    MAO M, WANG W, LU C, et al. Machine learning for board-level drop response of BGA packaging structure[J]. Microelectronics Reliability, 2022, 134: 114553. doi: 10.1016/j.microrel.2022.114553

    [11]

    LIU Y, YAO C, SUN F, et al. Numerical simulation of reliability of 2.5D/3D package interconnect structure under temperature cyclic load[J]. Microelectronics Reliability, 2021, 125: 114343. doi: 10.1016/j.microrel.2021.114343

    [12]

    SINGH B, MENEZES G, MCCANN S, et al. Board-level thermal cycling and drop-test reliability of large, ultrathin glass BGA packages for smart mobile applications[J]. IEEE Transactions on Components Packaging and Manufacturing Technology, 2017, 7(5): 726 − 733. doi: 10.1109/TCPMT.2017.2684464

    [13]

    LI G, FENG J, TIAN Yanhong, et al. Finite element analysis of underfill effect on the CBGA package reliability under thermal cycling[C]//International Conference on Electronic Packaging Technology (ICEPT), 2022.

    [14] 撒子成, 王尚, 冯佳运, 等. SiP器件组装焊点形态预测及其随机振动可靠性仿真研究[J]. 机械工程学报, 2022, 58(2): 276 − 283.

    SA Zicheng, WANG Shang, FENG Jiayun, et al. Simulation of SiP solder joint geometry and random vibration reliability prediction[J]. Chinese Journal of Mechanical Engineering, 2022, 58(2): 276 − 283.

    [15]

    LI G, WANG S, TIAN Y, et al. Solder joint shape optimization and thermal-mechanical reliability improvement for microwave RF coaxial connectors[J]. Microelectronics Reliability, 2024, 154: 115345. doi: 10.1016/j.microrel.2024.115345

    [16] 杨雪霞, 孙勤润, 张伟伟. 基于响应曲面法的BGA焊点结构参数优化设计[J]. 焊接学报, 2023, 44(11): 36 − 41. doi: 10.12073/j.hjxb.20220810002

    YANG Xuexia, SUN Qinrun, ZHANG Weiwei. Optimization design of BGA solder joint structure parameters based on response surface methodology[J]. Transactions of the China Welding Institution, 2023, 44(11): 36 − 41. doi: 10.12073/j.hjxb.20220810002

    [17]

    WU W, LI G, WANG S, et al. Study on the solder joint reliability of new diamond chip resistors for power devices[J]. Coatings, 2023, 13(4): 748. doi: 10.3390/coatings13040748

    [18]

    PECHT M. Creep fatigue models of solder joints: A critical review[J]. Microelectronics and Reliability, 2016, 59: 1 − 12. doi: 10.1016/j.microrel.2016.01.013

    [19]

    LEE W W, NGUYEN L T, SELVADURAY G S. Solder joint fatigue models: review and applicability to chip scale packages[J]. Microelectronics Reliability, 2000, 40(2): 231 − 244. doi: 10.1016/S0026-2714(99)00061-X

图(10)  /  表(3)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  6
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-18
  • 网络出版日期:  2024-09-26
  • 刊出日期:  2025-05-24

目录

    /

    返回文章
    返回