高级检索

微合金化显著改善414N硬面层抗氧化和抗热震性能及其机理

吴汝飞, 李奇, 高安阳, 张硕, 先成, 斯庭智

吴汝飞, 李奇, 高安阳, 张硕, 先成, 斯庭智. 微合金化显著改善414N硬面层抗氧化和抗热震性能及其机理[J]. 焊接学报, 2025, 46(4): 133-144. DOI: 10.12073/j.hjxb.20240316001
引用本文: 吴汝飞, 李奇, 高安阳, 张硕, 先成, 斯庭智. 微合金化显著改善414N硬面层抗氧化和抗热震性能及其机理[J]. 焊接学报, 2025, 46(4): 133-144. DOI: 10.12073/j.hjxb.20240316001
WU Rufei, LI Qi, GAO Anyang, ZHANG Shuo, XIAN Cheng, SI Tingzhi. Significantly improved oxidation and thermal shock resistances of 414N hard-faced layer by microalloying and its mechanism[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(4): 133-144. DOI: 10.12073/j.hjxb.20240316001
Citation: WU Rufei, LI Qi, GAO Anyang, ZHANG Shuo, XIAN Cheng, SI Tingzhi. Significantly improved oxidation and thermal shock resistances of 414N hard-faced layer by microalloying and its mechanism[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(4): 133-144. DOI: 10.12073/j.hjxb.20240316001

微合金化显著改善414N硬面层抗氧化和抗热震性能及其机理

基金项目: 安徽省科技重大专项 (202103a05020036).
详细信息
    作者简介:

    吴汝飞,硕士;主要从事钢铁材料方面的研究;Email: 15056494040@163.com

    通讯作者:

    斯庭智,博士,教授;Email: tzsiahut@163.com.

  • 中图分类号: TG 422

Significantly improved oxidation and thermal shock resistances of 414N hard-faced layer by microalloying and its mechanism

  • 摘要:

    将Ti/Nb/V与Ce联合微合金化的MA414N焊丝用于连铸辊硬面层的堆焊,对比测试了MA414N(MA为microalloying的缩写)与未微合金化414N硬面层抗氧化和抗热震性能,通过透射电子显微镜(transmission electron microscope,TEM)、扫描电子显微镜(scanning electron microscope,SEM)/能谱仪(energy disperse X-ray,EDX)、X 射线衍射仪(X-ray diffraction,XRD)等分析方法研究微合金化对硬面层氧化、热震性能的影响及作用机理. 结果表明,MA414N的抗氧化、抗热震性能较414N得到显著改善,650 ℃氧化360 h时,MA414N氧化增重和氧化速率常数较414N分别降低16%和31%,热震循环300次时,MA414N热震表面损伤因子较414N显著下降53%. 热震裂纹的萌生和扩展受热应力、组织应力和氧化共同作用,MA414N的抗热震性能显著改善主要得益于第二相析出产生的强化,少的马氏体(M)与奥氏体(A)的组织转变,及结构相对稳定的氧化膜.

    Abstract:

    The microalloying 414N (MA414N) welding wire via Ti/Nb/V and Ce was used to weld the hard-faced layer of continuous casting roller, and the oxidation and thermal shock resistance of the MA414N hard-faced layer were compared with 414N hard-faced layer without microalloying. Transmission electron microscope (TEM), scanning electron microscope (SEM)/energy disperse X-ray (EDX), and X-ray diffraction (XRD) techniques were used to investigate the effect of microalloying on oxidation and thermal shock resistance of the hard-faced layer and its mechanism. The results show that the oxidation and thermal shock resistance of MA414N is significantly improved, compared to that of 414N. After oxidation for 360 h at 650 °C, the oxidation weight gain and oxidation rate constant of MA414N are reduced by 16% and 31%, respectively, compared to 414N; the surface damage factor of MA414N after 300 thermal shock cycles is significantly reduced by 53% compared to 414N. The initiation and propagation of thermal shock-induced cracks are affected by thermal stress, microstructure stress, and oxidation. The significant improvement of thermal shock resistance of MA414N is mainly due to the strengthening of the second phase precipitation, less microstructure transformation between M and A, and a relatively stable oxide film structure.

  • 随着航空发动机向大推力、高推重比、高可靠性方向发展, 由于焊接结构具有重量轻、效率高、零件少、故障少和可靠性高的特点,航空发动机中大量采用焊接结构,如发动机的机匣、火焰筒、盘鼓、叶片和盘等[1-2]. GH2132是以Fe-25Ni-15Cr为基体、以金属间化合物γ'相(Ni3AlTi)为强化相一种新型低膨胀沉淀强化型高温合金[3],在650 ℃以下具有较高的屈服强度和持久强度,并且具有较好的加工性能和满意的焊接性能,适合制造长期工作在650 ℃以下的航空发动机高温承力部件,如涡轮盘、压气机盘、转子叶片和紧固件等[4-5].目前针对Inconel 738,Inconel 718,Inconel 617,Inconel 939等沉淀强化镍基合金焊接接头开展的研究表明,熔化焊接头存在大量的沉淀相(如Inconel738合金中的γ'相、Inconel718合金中的γ″相),在焊接热循环的影响下,由于组分液化和低熔点元素偏析极易在晶界处产生液膜,当液膜的张力无法抵抗熔池金属的凝固收缩应力时产生热裂纹,具体包括焊缝区凝固裂纹与热影响区液化裂纹[6-7]. 裂纹萌生始于枝晶间区域的二次相,金属间化合物、MC碳化物、γ相、共晶组织等是液化裂纹的主要影响因素,裂纹形成最主要的原因是偏析系数小于1的元素偏析[8].

    GH2132合金在焊接时具有一定的热裂纹倾向,但目前对其热裂纹开裂机理认识尚不够深入. 文中通过试制GH2132合金配套焊丝,开展了熔敷金属焊接试验、裂纹形貌和断口分析以及凝固计算等,对GH2132合金焊接过程中热裂纹敏感性进行了深入研究,通过理论计算与试验分析相结合的方式进行了GH2132合金结晶裂纹敏感性研究,为后续焊丝成分设计优化、焊接工艺制定及优化提供了理论支撑,进一步深化了对高温合金熔敷金属结晶裂纹的认识.同时引入GH2132结晶裂纹敏感性指数实现结晶裂纹敏感性的量化评价,对高温合金热裂纹敏感性评价具有指导意义.

    按照GB/T 25774.1—2010《焊接材料的检验 第一部分:钢、镍及镍合金熔敷金属力学性能试样的制备及检验》2.7条进行熔敷金属焊接试验,母材采用Q235钢板,试板尺寸为150 mm × 150 mm × 20 mm,单侧30°坡口,垫板尺寸为180 mm × 40 mm × 10 mm,采用钨极气体保护焊(gas tungsten arc welding, GTAW)焊接工艺进行堆焊,焊接工艺参数如表1所示.

    表  1  GTAW工艺参数
    Table  1.  GTAW parameters
    焊接电流I/A电弧电压U/V焊接速度v1 /(mm∙min−1)送丝速度v/(mm∙min−1)保护气体层温控制T/℃
    18013.5135110099.99% Ar≤100
    下载: 导出CSV 
    | 显示表格

    试验用焊接材料为GH2132镍基合金实心焊丝,规格为ϕ1.2 mm,焊丝化学成分见表2.

    表  2  试验用GH2132焊丝化学成分(质量分数,%)
    Table  2.  Compositions of experimental GH 2132 wire(wt. %)
    CCrNiMoFeTi
    0.05515.0126.171.16余量2.09
    SPSiMnVAl
    0.0080.0150.491.030.320.18
    下载: 导出CSV 
    | 显示表格

    采用JMatPro软件镍基合金数据库对试制焊丝的化学成分进行了基于Scheil模型的非平衡凝固计算.采用NETZSCH STA449F3型同步热分析仪DSC(differential scanning calorimeter)对GH2132高温合金GTAW熔敷金属进行加热速率为10 ℃/min的试验,测量合金熔化过程的相变特征温度.利用OLYMPUS GX51型光学显微镜对于熔敷金属裂纹体金相组织进行观察,利用ZEISS EVO18 型扫描电子显微镜进一步放大观察裂纹体及裂纹断口形貌,结合OX-FORD INCA能谱仪进行区域成分分析.

    熔敷金属横截面宏观金相如图1所示.在熔敷金属中存在较为密集的裂纹,裂纹走向基本一致,基本均沿垂直于熔敷金属表面方向. 位于接头中部的主裂纹1为穿透性裂纹,裂纹尺寸较大,长度接近10 mm,跨越了近5层焊道. 裂纹2跨越整个上层热影响区和近3层的底层焊道,可能为结晶裂纹或液化裂纹,裂纹3跨越上层热影响区至底层焊道中心. 无论裂纹数量、裂纹尺寸均表明该成分的熔敷金属热裂纹敏感性较高.

    图  1  宏观金相
    Figure  1.  Macroscopic metallograph

    图2为典型裂纹尖端的微观金相.可见在裂纹尖端,与开裂部分相连的未开裂部分成树枝枝晶形态,且存在共晶组织.据此可推测裂纹性质应为结晶裂纹[9-10].

    图  2  微观金相
    Figure  2.  Microscopic metallograph

    为进一步对裂纹性质进行分析与确定,采用SEM对图1中的主裂纹1断口形貌进行了观察,结果见图3.图3a为靠近熔敷金属表面上部的裂纹断口形貌,可见,低倍下,断口为典型的柱状晶形态,高倍下,断口形貌几乎全部为鹅卵石花样,一次柱状枝晶形态明显.图3b为裂纹中部的断口形态,断口同样为鹅卵石共晶花样,但形态接近为胞晶,在胞晶间的胞谷存在不规则的孔洞,应为枝晶间析出相脱落所致.图3c为裂纹底部的断口形貌,低倍下呈典型的柱状晶形态,高倍下也有局部为胞晶形态.

    图  3  断口形貌
    Figure  3.  Microstructure of crack fracture. (a) Top; (b) Middle; (c) Bottom

    Kou等人[11-13]指出,凝固裂纹的产生与枝晶生长、显微组织、液相润湿性等多方面因素密切相关,枝晶长大过程中相邻晶粒二次或三次枝晶臂连接形成的桥接可以起到抵抗凝固裂纹或液化裂纹的作用.由于桥接为已凝固的固态组织,其在断口中应呈已凝固的固态金属断裂形貌. 文中裂纹断口面上绝大部分区域的形貌呈连续分布的柱状晶或连续分布液膜,表面光滑,这表明裂纹开裂发生在结晶终了相对较早的阶段,局部液相较为连续,在枝晶间并未形成桥接.

    图4为裂纹1尖端的SEM形貌.从图4a中可以看出,在裂纹周围的基体组织中存在大量的析出相.从图4b中可以看出,基体中的析出相从形态上分主要包括两类,一类为点状析出相,直径小于1 μm.另一类为条状或块状析出相,长度约在1 ~ 15 μm之间,在裂纹附近分布有较大面积的连续分布层片状共晶组织.从图4c ~ 图4d可以明显看出,在裂纹尖端位置沿析出相或共晶组织与基体γ的界面也分布有裂纹.这表明在局部未形成如图4b中典型的层片状共晶组织时,随着结晶裂纹的扩展,在析出相与γ的界面也会形成裂纹[14-15].

    图  4  熔敷金属SEM微观形貌
    Figure  4.  Microstructure of deposited metal by SEM. (a) Crack tip; (b) Precipitated phase; (c) Eutectic structure; (d) Precipitated phase interface crack

    表3为熔敷金属不同位置区域的EDS成分分析结果,每个特征区域分析视场不少于5处.可见,基体γ相中Ti含量较低,约为名义成分的50%.在点状析出相、杆状析出相、共晶组织、裂纹断口液膜中均含有较高含量的Ti.相比较而言,点状析出相中Ti含量最高,达到了47.8%,推测其应为MC型碳化物,而杆状析出相、共晶组织中Ti含量相当,液膜中Ti含量略低.当然,由于液膜较薄,EDS分析深度超过了液膜厚度,因此液膜的EDS成分结果可能带有基体γ相的成分,进而导致Ti含量偏低,但即便如此,也能够证明液膜中存在Ti富集现象.

    表  3  熔敷金属各典型相EDS分析结果(质量分数,%)
    Table  3.  EDS results of typical phases in deposited metal
    分析TiNiCrFe
    基体1.1±0.424.8±1.015.8±0.555.1±1.5
    点状析出相47.8±1.511.6±1.09.0±1.024.4±1.5
    杆状析出相20.8±1.526.1±1.56.6±0.445.6±2.3
    液膜12.6±2.328.2±0.513.9±2.441.7±3.2
    共晶组织18.8±0.832.1±0.97.9±0.230.3±1.3
    下载: 导出CSV 
    | 显示表格

    图5采用基于Scheil凝固模块及镍基合金数据库对表1中成分进行计算的结果. 从图5a图中相比例随温度变化趋势可以看出,合金凝固路径为L→L + γ→L + γ + (γ + MC)→L + γ + (γ + MC) + (γ + MC + Laves)→γ + (γ + MC) + (γ + MC + Laves),凝固过程MC、Laves先后以共晶反应从液相中析出,共晶反应的发生温度分别为1313,1171 ℃,对应温度的液相比例分别为24.0%、5.3%. 结晶裂纹通常产生于固液两相共存的区域,该区域也被称为糊状区[12]. 通常结晶裂纹主要产生于凝固终了阶段(液相比例分数fliquid ≤ 5%),而图5a中凝固终了阶段发生的L→γ + Laves的共晶反应正处于该阶段.图5b为凝固过程中液相成分随温度变化趋势,可见随着凝固的进行,液相中的Ti,Mo,Mn含量不断上升,Fe,Cr含量不断下降,Ni含量变化不大,这表明Ti,Mo,Mn为正偏析元素,Fe,Cr为负偏析元素,Ni接近于平衡分配,在1171 ℃时L→γ + Laves的共晶反应,此时残余液相中Ti含量约为12%,而其他元素含量变化不大,这表明Ti元素的偏析是导致发生L→γ + Laves共晶反应的主要原因.为便于定性比较各元素的偏析倾向大小计算了各元素的分配系数k,Ti,Mo,Ni,Cr,Fe的分配系数k依次为0.18,0.42,0.93,1.24,1.25,可见Ti的偏析倾向最大,Mo次之.图5c为残余液相比例约为5%时,共晶析出的Laves相及基体γ相的成分对比,可以看出,相比于基体γ相,Laves中Ti,Mo含量明显更高,Cr,Ni显著较低,Fe含量相差不大,这种趋势与表3熔敷金属基体γ、Laves相及共晶组织分析结果基本一致,可见凝固计算结果具有较强的指导意义.

    图  5  Scheil凝固计算结果
    Figure  5.  Solidification calculated results based on Scheil model. (a) Trend of phase proportion with temperature; (b) The composition of liquid phase changes with temperature during solidification; (c) The composition of Laves phase was compared with matrix γ at the end of crystallization

    结晶裂纹主要发生在凝固过程的终了阶段.Kou[11]建立了结晶裂纹开裂的数学模型,并基于模型提出了结晶裂纹敏感性的评价指标结晶裂纹指数SCI.

    $$ SCI=\left|{\rm{d}}T/{\rm{d}}{\left({f}_{{\rm{s}}}\right)}^{1/2}\right| $$ (1)

    式中:fs表示凝固末期固液共存阶段中固相的比例;SCI指标重点强调了凝固固相应变速率与液相补充速率之间的动态平衡,其中凝固固相的应变为促进开裂的因子,而液相补充为阻止开裂的因子,可见随着SCI的增大,结晶裂纹敏感性增加. 文中基于凝固计算结果分别绘制了GH2132合金温度Tfs1/2fs关系曲线、SCIfs关系曲线,分别见图6图7. 从图6可以看出,随着温度的降低,无论fs1/2fs逐渐增加,相比较而言,在结晶终了阶段(fs = 0.8 ~ 1之间),fs1/2增加更为迅速.由图7可见,SCI在0.9< fs < 0.95范围时达到最大值.Yuanbo等人[16-18]采用SCI评价了增材制造高温合金的结晶裂纹敏感性.表4汇总了文中及Yuanbo等人的结晶裂纹指数SCI与凝固温度区间STR计算结果.可见,除IN718合金外,表中其它合金的在0.9 < fs < 0.99范围内SCI值显著高于0.8 < fs < 0.9范围.在0.8 < fs < 0.99范围内,各合金SCI平均值排序从大到小依次为CM247LC > IN738LC > GH2132 > IN718. IN718合金通常被视为可打印的材料,IN738LC则不是. 从SCI来看,文中GH2132合金裂纹敏感性介于IN738LC与IN718之间,与实际情况较为相符. 但从STR来看,文中GH2132的STR最小,甚至低于IN718,仅仅利用STR宽窄评价合金裂纹敏感性缺乏理论依据,相比较而言,SCI具有一定的理论基础,能够较为合理的解释文中试验结果.但需要注意到,SCI评价指标的一些缺点也是显而易见的,如在模型中未考虑结晶终了阶段液相的润湿性、液相与固相的交互作用等影响.

    图  6  基于凝固计算的GH2132合金温度Tfs1/2fs关系
    Figure  6.  Relationship between T-fs1/2 and T-fs curves of GH2132 alloy based on solidification calculation
    图  7  基于凝固计算的GH2132合金SCIfs关系曲线
    Figure  7.  SCI-fs Relationship curve of GH2132 alloy based on solidification calculation
    表  4  基于凝固计算的不同高温合金SCISTR对比[16]
    Table  4.  SCI and STR comparison for various alloy based upon prediction by Scheil solidification model
    合金体系结晶裂纹指数SCI/℃ 凝固温度区间STR/℃
    fs = 0.8 ~ 0.9fs = 0.9 ~ 0.99fs = 0.8 ~ 0.99Scheil凝固
    GH2132124924091944 258
    CM247LC8751598014109392
    IN71814599211261264
    IN738LC78766815711286
    下载: 导出CSV 
    | 显示表格

    图8为GH2132熔敷金属的升温DSC曲线,可以看出曲线上出现三个峰,从低温到高温三个峰的峰值温度分别为1019 ℃、1256 ℃,1395 ℃.合金升温过程中液相线温度通常标定为峰值,而升温固相线温度则标定为主峰切线的交点.因此液相线温度为1395 ℃,固相线温度为1358 ℃,1395 ℃左右的吸热过程为基体γ熔化行为,结合JMatPro理论计算结果与熔敷金属组织微观形貌分析可知,1019 ℃和1256 ℃左右的吸热过程分别为基体熔化前Laves、MC碳化物低熔点共晶相熔化.

    图  8  GH2132熔敷金属的DSC曲线
    Figure  8.  Curves of all weld metal with GH2132 by DSC

    根据DSC加热曲线固相线附近的圆弧大小对合金显微偏析程度进行定性分析,显微偏析较为严重时,曲线表现为较大圆弧,相反显微偏析小时,曲线无明显圆弧,表现为尖锐拐点[19]. 图8中1019 ℃、1256 ℃吸热峰曲线为明显的较大圆弧,间接体现了合金的Ti元素偏析倾向严重,1395 ℃吸热峰曲线固相线附近为尖锐拐点,偏析较小.降温过程中由于合金加热到液相线温度以上,消除了合金热历史,在缓慢的冷却条件下重新自由凝固造成较大偏析,曲线上除凝固放热峰固相线附近有明显的圆弧外无其他放热现象.

    (1) 试制GH2132配套高温合金焊丝GTAW熔敷金属存在较大的结晶裂纹敏感性,其开裂机制为:在结晶终了阶段发生了L→γ + Laves相低熔共晶反应,残余液相在凝固收缩作用应力下开裂.

    (2) GH2132熔敷金属枝晶间析出相主要包括点状MC碳化物和条状或块状Laves相,共晶Laves相的形成主要与Ti元素在凝固结晶过程偏析行为有关,需严格控制焊接热输入和焊丝中Ti及其他杂质元素含量,控制Laves相尺寸在合理范围内,进而避免GH2132高温合金GTAW焊接热裂纹产生.

    (3) GH2132结晶裂纹指数SCI为1944 ℃,STR为258 ℃,其热裂纹敏感性较高,相比STRSCI指标能相对更为合理地实现高温合金结晶裂纹敏感性的量化评价,但仍存在考虑因素不全等问题.

  • 图  1   414N和MA414N试样组织形貌

    Figure  1.   Microstructural morphology of 414N and MA414N samples. (a) metallographic of 414N; (b) metallographic of MA414N; (c) TEM of 414N; (d) TEM of MA414N; (e) HRTEM of the secondary phase of Fig.1(d); (f) IFFT of the secondary phase of Fig.1(e)

    图  2   414N和MA414N试样氧化动力学曲线和XRD

    Figure  2.   Oxidation kinetics curves and XRD patterns. (a) oxidation kinetics curves; (b) XRD patterns of the oxidized samples for 360 h

    图  3   414N和MA414N试样表面SEM形貌及氧化产物EDX结果

    Figure  3.   SEM images and EDX spectra. (a) SEM image of the oxidized 414N sample; (b) SEM image of the oxidized MA414N sample; (c) partial magnification of Fig.3(a); (d) partial magnification of Fig.3(b); (e) EDX spectra of Sp1; (f) EDX spectra of Sp2; (g) EDX spectra of Sp3

    图  4   414N和MA414N氧化360 h试样表面Fe 2p3/2, Cr 2p3/2, Mn 2p3/2和Ce 3d3/2的高分辨率XPS

    Figure  4.   High-resolution XPS spectra of the oxidized 414N and MA414N samples for 360 h. (a) Fe 2p3/2 of 414N; (b) Cr 2p3/2 of 414N; (c) Mn 2p3/2 of 414N; (d) Fe 2p3/2 of MA414N; (e) Cr 2p3/2 of MA414N; (f) Mn 2p3/2 of MA414N; (g) Ce 3d3/2 of MA414N

    图  5   414N和MA414N试样热震裂纹扩展曲线和循环300次试样表面损伤因子分析

    Figure  5.   Crack growth curves and surface damage factor analysis of the 414N and MA414N samples. (a) crack growth curves; (b) surface damage factor analysis of the 414N after 300 thermal fatigue cycles; (c) surface damage factor analysis of the MA414N after 300 thermal fatigue cycles

    图  6   热震试验前和循环300次试样XRD图及循环300次试样Rietveld拟合图谱

    Figure  6.   XRD patterns and Rietveld refinements of the 414N and MA414N samples before cycle and after 300 thermal fatigue cycles. (a) XRD patterns; (b) Rietveld refinements

    图  7   414N和MA414N平衡相组分图

    Figure  7.   Equilibrium phase component diagram of 414N and MA414N

    图  8   MA414N循环300次试样TEM组织形貌、第二相粒子HRTEM及其IFFT

    Figure  8.   Microstructural morphology of the MA414N sample after 300 thermal fatigue cycles. (a) TEM; (b) HRTEM; (c) IFFT

    图  9   414N和MA414N热震循环300次试样裂纹SEM全貌,裂纹末端氧化膜及裂纹末端组织SEM形貌图

    Figure  9.   SEM of cracks, oxide film and microstructure at the end of crack. (a) SEM of 414N cracks; (b) SEM of MA414N cracks; (c) oxide film at the end of 414N cracks; (d) oxide film at the end of MA414N cracks; (e) microstructure at the end of 414N cracks; (f) microstructure at the end of MA414N cracks

    图  10   热震裂纹萌生与扩展模型

    Figure  10.   Thermal fatigue crack initiation and propagation model

    表  1   辊坯、焊丝和硬面层的化学成分 (质量分数,%)

    Table  1   Chemical compositions of the roller billet, welding wires and hard-faced layers

    试样 C Cr Ni Mn Mo Ti Nb V Ce Si N P S Fe
    辊坯 0.32 0.22 1.11 0.15 0.046 0.035 0.24 0.003 0.004 余量
    430焊丝 0.13 20.18 0.56 0.82 0.21 0.023 0.006 余量
    414N焊丝 0.08 13.35 4.00 1.30 0.70 0.55 0.10 0.030 0.030 余量
    MA414N焊丝 0.08 13.35 3.50 1.30 0.70 0.15 0.150 0.300 0.02 0.60 0.10 0.030 0.030 余量
    414N硬面层 0.06 13.28 4.00 1.02 0.65 0.31 0.02 0.020 0.020 余量
    MA414N硬面层 0.06 13.31 3.45 1.27 0.66 0.08 0.100 0.270 0.01 0.52 0.02 0.020 0.020 余量
    下载: 导出CSV
  • [1]

    GUO P, MA S, JIAO M, et al. Effect of chromium on microstructure and oxidation wear behavior of high-boron high-speed steel at elevated temperatures[J]. Materials, 2022, 15(2): 557 − 572. doi: 10.3390/ma15020557

    [2] 程建国, 潘龙博, 张硕, 等. 42CrMo 连铸辊堆焊硬面层的高温磨损行为[J]. 材料保护, 2021, 54(7): 37 − 43.

    CHENG Jianguo, PAN Longbo, ZHANG Shuo, et al. High-temperature wear behaviors of the hard-facing metal layer of 42CrMo continuous casting roller[J]. Materials Protection, 2021, 54(7): 37 − 43.

    [3]

    ABD RASHID M W, GAKIM M, ROSIL Z M, et al. Formation of Cr23C6 during the sensitization of AISI 304 stainless steel and its effect to pitting corrosion[J]. International Journal of Electrochemical Science, 2012, 7(10): 9465 − 9477. doi: 10.1016/S1452-3981(23)16211-0

    [4]

    LI X, WU Y, BI H. Study on the corrosion properties of 0Cr11 ferritic stainless steel for automotive exhaust systems[J]. Baosteel Technical Research, 2010, 4(1): 53 − 55.

    [5]

    OH D, HAN K, HONG S, et al. Effects of alloying elements on the thermal fatigue properties of the 15% Cr ferritic stainless steel weld HAZ[J]. Materials Science & Engineering A, 2012, 555: 44 − 51. doi: 10.1016/j.msea.2012.06.031

    [6]

    YU X F, ZHENG D Y, YANG X F, et al. Effect of carbide precipitation behavior at high temperatures on microstructure and mechanical properties of M50 steel[J]. Journal of Materials Research and Technology, 2022, 18: 1155 − 1165. doi: 10.1016/j.jmrt.2022.03.021

    [7] 曾邦兴, 胡永俊, 邹晓东, 等. 保护气体对(Nb, Ti)C增强铁基复合堆焊层组织与性能的影响[J]. 焊接, 2022, 6: 33 − 41.

    ZENG Bangxing, HU Yongjun, ZOU Xiaodong, et al. Influence of shielding gas on microstructure and properties of (Nb, Ti)C reinforced Fe-based composite surfacing layer[J]. Welding & Joining, 2022, 6: 33 − 41.

    [8]

    ABE F, MURATA M, MIYAZAKI H. Effect of TiC and NbC carbides on creep life of stainless steels[J]. Materials at High Temperatures, 2019, 36(1): 35 − 47. doi: 10.1080/09603409.2018.1452365

    [9] 解传滨. Ni-Cr-Al-Sc系合金高温抗氧化性能研究[D]. 南宁: 广西大学, 2022.

    XIE Chuanbin. Effect of high temperature corrosion resistance of Ni-Cr-Al-Sc superalloy[D]. Nanning: Guangxi University, 2022.

    [10]

    WANG S, ZHENG Z, ZHENG K, et al. High temperature oxidation behavior of heat resistant steel with rare earth element Ce[J]. Materials Research Express, 2020, 7(1): 1 − 11.

    [11] 高安阳, 蔡忠贤, 王飞, 等. 一种“素化”连铸辊辊坯材料体系及其制备方法: 中国, 202211663335.2[P]. 2023.

    GAN Anyang, CAI Zhongxian, WANG Fei, et al. A "plain" continuous casting roll billet material system and its preparation method: China, 202211663335.2[P]. 2023.

    [12] 全国钢标准化技术委员会. 连铸辊焊接复合制造技术规范: YB/T 4326-2013[S]. 北京: 冶金工业出版社, 2013.

    Technical Committee on Steel of Standardization Committee of China. Welding manufacture technical criterion for continuous casting roll: YB/T 4326-2013[S]Beijing: Metallurgical Industry Press. 2013.

    [13] 全国钢标准化技术委员会. 钢的抗氧化性能测定方法: GB/T 13303-1991 [S]. 北京: 中国标准出版社, 1991.

    Technical Committee on Steel of Standardization Committee of China. Steels-determination method of oxidation resistance: GB/T 13303-1991[S]. Beijing: Standards Press of China. 1991.

    [14]

    IZUMI F, IKEDA T. A rietveld-analysis programm RIETAN-98 and its applications to zeolites[J]. Materials Science Forum, 2000, 321: 198-205.

    [15]

    LI Z M, LI X N, YUAN J H, et al. Strong elemental interaction enhances the thermal stability of coherent precipitation strengthened Cu-Ni-Al alloys[J]. Materials Science & Engineering A, 2021, 827: 1 − 16.

    [16] 段志英, 张芊芊, 方舟, 等. 添加 Yb 对 Al-Zn-Mg-Cu-Zr-Cr 合金组织性能的影响[J]. 粉末冶金材料科学与工程, 2023, 28(5): 413 − 426.

    DUAN Zhiying, ZHANG Qianqian, FANG Zhou, et al. Effects of Yb addition on microstructure and properties of Al-Zn-Mg-Cu-Zr-Cr alloy[J]. Materials Science and Engineering of Powder Metallurgy, 2023, 28(5): 413 − 426.

    [17] 李宁, 马赛, 秦春, 等. 水蒸气对GH3600合金高温氧化行为的影响[J]. 热加工工艺, 2023, 52(8): 113 − 116.

    LI Ning, MA Sai, QIN Chun, et al. Effects of water vapor on high temperature oxidation behavior of GH3600 alloy[J]. Hot Working Technology, 2023, 52(8): 113 − 116.

    [18]

    ZHENG Z, WANG S, LONG J, et al. Effect of rare earth elements on high temperature oxidation behaviour of austenitic steel[J]. Corrosion Science, 2020, 164: 1 − 13.

    [19]

    ZHAO Y, LIU H L, WEI L L, et al. An overview on the novel heat-resistant ferritic stainless steels[J]. Tungsten, 2023, 50(4): 467 − 480.

    [20] 杜晓洁, 丁骁, 马新元, 等. 耐高温氧化Fe-Cr-Ni中熵合金氧化层的微结构与力学性能分布[J]. 表面技术, 2022, 51(8): 363 − 374.

    DU Xiaojie, DING Xiao, MA Xinyuan, et al. Microstructure and micro-mechanical distribution of oxide layer formed on Fe-Cr-Ni medium entropy alloy with excellent high-temperature oxidation resistance[J]. Surface Technology, 2022, 51(8): 363 − 374.

    [21]

    LIU T, ZHENG K, WANG J, et al. Effect of Ce on oxidation behaviour and microstructure evolution of a nickel-saving austenitic heat-resistant cast steel[J]. Corrosion Science, 2020, 166: 1 − 14.

    [22]

    DU X, MA X, DING X, et al. Enhanced high-temperature oxidation resistance of low-cost Fe‐Cr‐Ni medium entropy alloy by Ce-adulterated[J]. Journal of Materials Research and Technology, 2022, 16: 1466 − 1477. doi: 10.1016/j.jmrt.2021.12.087

    [23]

    DESHMUKH P R, SOHN Y, SHIN W G. Flexible solid-state symmetric supercapacitor based on (Fe, Cr)2O3 oxide layer developed on the stainless steel mesh[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 300 − 310.

    [24]

    REN Y, LI N, FENG J, et al. Adsorption of Pb (II) and Cu (II) from aqueous solution on magnetic porous ferrospinel MnFe2O4[J]. Journal of Colloid and Interface Science, 2012, 367(1): 415 − 421. doi: 10.1016/j.jcis.2011.10.022

    [25] 陈珮琳, 赵艳君, 李平珍, 等. 316L 不锈钢高温氧化及高温拉伸性能[J]. 材料热处理学报, 2023, 43(11): 103 − 110.

    CHEN Pinglin, ZHAO Yanjun, LI Pingzhen, et al. High temperature oxidation and high temperature tensile properties of 316L stainless stee[J]. Transactions of Materials and Heat Treatment, 2023, 43(11): 103 − 110.

    [26] 姜来合格, 邓玉春, 赵娇玉, 等. Q345E钢激光-电弧复合焊T形接头疲劳性能[J]. 焊接学报, 2024, 45(5): 1 − 7. doi: 10.12073/j.hjxb.20230613001

    JANG Laihege, DENG Yuchun, ZHAO Jiaoyu, et al. Fatigue properties of laser-arc hybrid welded Q345E steel T-joints[J]. Transactions of the China Welding Institution, 2024, 45(5): 1 − 7. doi: 10.12073/j.hjxb.20230613001

    [27]

    JIN Y H, CHEN Y S, MA Y M, et al. Fatigue crack propagation of 7050 aluminum alloy FSW joints after surface peening[J]. China Welding, 2023, 32(1): 18-26.

    [28]

    WU X, XU L. Computer aided evaluation of thermal fatigue cracks on hot-work tool steel[C]//The 6th International Tooling Conference, September 10-13, 2002, Karlstad University, Karlstad, Sweden. Switzerland: Trans Tech Publications Ltd. 2002: 657-666.

    [29]

    ZHAN J, LI M, HUANG J, et al. Thermal fatigue characteristics of type 309 austenitic stainless steel for automotive manifolds[J]. Metals, 2019, 9(2): 129 − 137. doi: 10.3390/met9020129

    [30]

    ZHAN J M, BI H Y, LI M C. Thermal fatigue behavior of 441 ferritic stainless steel in air and synthetic automotive exhaust gas[J]. Science China Technological Sciences, 2022, 65(1): 169 − 178. doi: 10.1007/s11431-021-1865-7

    [31]

    CHOI J, CHOI J, LEE K, et al. Fatigue life prediction methodology of hot work tool steel dies for high-pressure die casting based on thermal stress analysis[J]. Metals, 2022, 12(10): 1744 − 1761. doi: 10.3390/met12101744

    [32]

    JIANG Q C, ZHAO X M, QIU F, et al. The relationship between oxidation and thermal fatigue of martensitic hot-work die steels[J]. Acta Metallurgica Sinica (English Letters), 2018, 31: 692 − 698. doi: 10.1007/s40195-017-0699-8

    [33] 孙淑华, 傅万堂, 王振华, 等. 一种微合金化马氏体不锈钢的连续冷却转变研究[J]. 燕山大学学报, 2011, 35(2): 102 − 104. doi: 10.3969/j.issn.1007-791X.2011.02.002

    SUN Shuhua, Fu Wantang, WANG Zhenhua, et al. Study on continuous cooling transformation of a micro-alloyed martensitic stainless steel[J]. Journal of Yanshan University, 2011, 35(2): 102 − 104. doi: 10.3969/j.issn.1007-791X.2011.02.002

    [34] 王振华, 孙淑华, 张亚才, 等. 一种微合金化 0Cr13Ni4Mo 不锈钢的相图及临界转变温度研究[J]. 大型铸锻件, 2011(2): 1 − 3. doi: 10.3969/j.issn.1004-5635.2011.02.001

    WANG Zhenhua, SUN Shuhua, ZHANG Yacai, et al. Study on phase diagram and critical transformation temperature of a micro-alloyed 0Cr13Ni4Mo stainless steel[J]. Heavy Casting and Forging, 2011(2): 1 − 3. doi: 10.3969/j.issn.1004-5635.2011.02.001

    [35] 刘同华, 强文江, 王伟. 不锈钢中合金元素的作用及其研究现状[J]. 热加工工艺, 2018, 47(4): 17 − 21.

    LIU Tonghua, QIANG Wenjiang, WANG Wei. Function and research status of alloying elements in stainless steel[J]. Hot Working Technology, 2018, 47(4): 17 − 21.

    [36] 王鑫. 钛对铌-钛微合金化700L大梁钢组织和性能的影响[J]. 包钢科技, 2023, 49(2): 55 − 59. doi: 10.3969/j.issn.1009-5438.2023.02.013

    WANG Xin. Effects of Ti on microstructure and properties of Nb-Ti microalloyed 700L beam steel[J]. Science & Technology of Baotou Steel, 2023, 49(2): 55 − 59. doi: 10.3969/j.issn.1009-5438.2023.02.013

    [37]

    HASHEMI S G, EGHBALI B. Analysis of the formation conditions and characteristics of interphase and random vanadium precipitation in a low-carbon steel during isothermal heat treatment[J]. International Journal of Minerals, Metallurgy, and Materials, 2018, 25: 339 − 349.

    [38]

    KARMAKARA A, MUKHERJEE S, KUNDU S, et al. Effect of composition and isothermal holding temperature on the precipitation hardening in Vanadium-microalloyed steels[J]. Materials Characterization, 2017, 132(10): 31 − 40.

    [39]

    MEHRABI A, MCDERMID J R, WANG X, et al. Austenite nucleation and growth as a function of starting microstructure for a Fe-0.15C-5.56Mn-1.1Si-1.89Al medium-Mn steel[J]. Steel Research International, 2023, 94: 1 − 10.

  • 期刊类型引用(8)

    1. 刘波,李玲,何春双,刘雪丽. 对开式扩散焊钛合金空心支板水浸超声C扫描检测方法研究. 航空精密制造技术. 2024(03): 6-9 . 百度学术
    2. 迟大钊,徐智贤,刘海春,李庆生,郭强,苏维刚,贾涛. 基于改进SIFT算法的超声图像拼接方法. 焊接学报. 2024(10): 1-7 . 本站查看
    3. 刘祥,滕俊飞,吕彦龙,陈曦,邬冠华. 薄壁小直径柱/板扩散焊界面超声信号特征分析与缺陷智能识别. 失效分析与预防. 2024(05): 319-326 . 百度学术
    4. 赖迎庆,张柏源,谢建红. 双合金焊接盘的水浸超声检测. 无损探伤. 2023(03): 38-41 . 百度学术
    5. 袁晓斌,陈虹宇,胥胜洪,袁浩. 基于超声波的升船机船厢现场组拼焊缝无损检测方法. 焊接技术. 2023(07): 107-111 . 百度学术
    6. 孔庆茹,陈尧,马啸啸,陈明. 含型腔扩散焊零件加强筋的相控阵超声检测. 失效分析与预防. 2023(06): 362-368+399 . 百度学术
    7. 吕洪涛,李锋,刘志毅,王俊涛,张祥春,石亮,王池权,邵成伟. 基于超声C扫描数字图像处理的缺陷面积分析. 无损检测. 2022(12): 37-41+71 . 百度学术
    8. 董瑞琴,王婵,陈明,马啸啸,陈尧. 窄腹板扩散焊相控阵超声检测工艺探究. 无损探伤. 2021(05): 9-13 . 百度学术

    其他类型引用(9)

图(10)  /  表(1)
计量
  • 文章访问数:  97
  • HTML全文浏览量:  12
  • PDF下载量:  44
  • 被引次数: 17
出版历程
  • 收稿日期:  2024-03-15
  • 网络出版日期:  2024-10-14
  • 刊出日期:  2025-04-24

目录

/

返回文章
返回