高级检索

焊接热循环对5083铝合金搅拌摩擦焊缝晶粒结构的影响

许楠, 徐玉缀, 高天旭, 宋亓宁, 包晔峰

许楠, 徐玉缀, 高天旭, 宋亓宁, 包晔峰. 焊接热循环对5083铝合金搅拌摩擦焊缝晶粒结构的影响[J]. 焊接学报, 2025, 46(6): 27-33. DOI: 10.12073/j.hjxb.20240315001
引用本文: 许楠, 徐玉缀, 高天旭, 宋亓宁, 包晔峰. 焊接热循环对5083铝合金搅拌摩擦焊缝晶粒结构的影响[J]. 焊接学报, 2025, 46(6): 27-33. DOI: 10.12073/j.hjxb.20240315001
XU Nan, XU Yuzhui, GAO Tianxu, SONG Qining, BAO Yefeng. Influence of welding thermal cycle on grain structure of 5083 aluminum alloy weld by friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(6): 27-33. DOI: 10.12073/j.hjxb.20240315001
Citation: XU Nan, XU Yuzhui, GAO Tianxu, SONG Qining, BAO Yefeng. Influence of welding thermal cycle on grain structure of 5083 aluminum alloy weld by friction stir welding[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(6): 27-33. DOI: 10.12073/j.hjxb.20240315001

焊接热循环对5083铝合金搅拌摩擦焊缝晶粒结构的影响

基金项目: 

国家自然科学基金资助项目(51805145);江苏省基础研究计划(BK20211067);江苏省高校“青蓝工程”资助项目;大学生创新创业训练计划资助项目.

详细信息
    作者简介:

    许楠,博士,副教授;主要研究方向为搅拌摩擦焊接及加工;Email: xunan@hhu.edu.cn

  • 中图分类号: TG 453.9

Influence of welding thermal cycle on grain structure of 5083 aluminum alloy weld by friction stir welding

  • 摘要:

    采用搅拌摩擦焊(friction stir welding, FSW)对2 mm厚的5083铝合金进行对接焊接,并获得了无缺陷的焊接接头. 利用光学显微镜(optical microscope,OM)和电子背散射衍射(electron back scatterdiffraction,EBSD)研究焊接热循环对焊缝晶粒结构的影响. 结果表明,随着搅拌头转速增大,应变率增大,动态再结晶主导形成的初始再结晶晶粒减小;焊接峰值温度从285 ℃升至421 ℃,冷却速度从32.3 ℃/s降至20.2 ℃/s,使焊缝的晶粒长大倾向增大,焊缝中心的平均晶粒尺寸从1.4 μm增加至8.2 μm. 在高热输入条件下,具有Goss型 {110}<001> 再结晶织构的晶粒长大速度较快,导致焊缝中心的剪切织构开始向再结晶织构转变,焊接热循环的变化不会显著改变焊缝的晶粒结构和织构类型,只对最终的晶粒尺寸和大角度晶界的比例有所影响,这种微观结构的稳定性归因于在整个较大的热输入范围内焊缝的晶粒细化由连续动态再结晶机制为主导.

    Abstract:

    2 mm thick 5083 aluminum alloy was butt welded by FSW, and defect-free welded joints were obtained. The effect of the welding thermal cycle on the grain structure of the weld was studied by OM and EBSD. The results show that with the increase in the friction stir tool rotation speed, the strain rate rises, and the initial recrystallized grains caused by dynamic recrystallization decrease. The peak welding temperature exhibits a significant increase from 285 °C to 421 °C, accompanied by a corresponding reduction in cooling rate from 32.3 to 20.2 °C/s. This change results in significant grain growth, increasing the average grain size at the weld center from 1.4 to 8.2 μm. Under the high heat input condition, the grains with Goss type {110}<001> recrystallized texture grow rapidly, resulting in the shear texture changing to recrystallized texture. The change in the welding thermal cycle does not significantly affect the grain structure and textural type of the weld, and it just affects the final grain size and the proportion of large-angle grain boundaries. This microstructural stability of the weld is attributed to the fact that the grain refinement is dominated by continuous dynamic recrystallization throughout a wide range of heat inputs.

  • 图  1   铝合金FSW装置和热电偶设置位置

    Figure  1.   Set-up of FSW device and the setting position of K-type thermocouple

    图  2   FSW样品坐标系与剪切变形坐标系

    Figure  2.   Coordinate systems of FSW sample and shear deformation

    图  3   5083铝合金FSW焊缝的典型表面形貌

    Figure  3.   Surface appearance of selective FSW 5083 aluminum alloy joints. (a) 1; (b) 5; (c) 9

    图  4   高热输入和低热输入条件下的焊缝热循环曲线

    Figure  4.   Thermal cycle curves of the FSW welds obtained by high and low heat input conditions

    图  5   母材的OM和EBSD表征结果

    Figure  5.   OM & EBSD results of the base material. (a) OM; (b) grain boundary map; (c) KAM; (d) (111) pole figure; (e) ODF

    图  6   焊缝中心的微观组织

    Figure  6.   Microstructure of the weld center. (a) OM; (b) inverse pole figures

    图  7   焊缝中心的取向差分布

    Figure  7.   Misorientation angle distribution of the weld center

    图  8   不同焊接条件下焊缝晶粒尺寸与冷却时间的关系

    Figure  8.   Relationship between grain size and cooling time under different welding conditions

    图  9   焊缝中心的(111)和(110)极图

    Figure  9.   (111) and (011) pole figures of the weld center. (a) low heat input condition (3); (b) high heat input condition (8)

    表  1   焊接参数及对应的焊缝成形情况

    Table  1   Welding parameters and corresponding weld forming conditions

    样品 焊接速度
    v/(mm·min−1)
    转速
    w/(r·min−1)
    RP值
    v/ω(mm·r−1)
    成形
    1 200 200 1 ×
    2 200 300 0.67 ×
    3 200 400 0.5
    4 200 500 0.4
    5 200 600 0.33
    6 200 700 0.28
    7 200 800 0.25
    8 200 900 0.22
    9 200 1000 0.2 ×
    注:× :有缺陷;○:无缺陷
    下载: 导出CSV

    表  2   不同焊接参数下的RP值、峰值温度、冷却速度及对应的平均晶粒尺寸

    Table  2   RP Values, peak temperatures, cooling rates, and corresponding average grain sizes under different welding parameters

    样品 峰值温度
    T/℃
    冷却速度
    vT/(℃·s−1)
    晶粒尺寸
    d/μm
    3 285 32.3 1.4
    4 298 30.8 2.2
    5 324 31.5 3.8
    6 348 28.9 5.1
    7 387 25.7 7.5
    8 421 20.2 8.2
    下载: 导出CSV
  • [1] 戴翔, 石磊, 武传松, 等. 2195-T6铝锂合金搅拌摩擦焊接头微观组织结构与力学性能[J]. 焊接学报, 2022, 43(6): 25 − 34. doi: 10.12073/j.hjxb.20210524002

    DAI Xiang, SHI Lei, WU Chuansong, et al. Microstructure and mechanical properties of 2195-T6 Al-Li alloy joint prepared by friction stir welding[J]. Transactions of the China Welding Institution, 2022, 43(6): 25 − 34. doi: 10.12073/j.hjxb.20210524002

    [2]

    KALINENKO A, VYSOTSKIY I, MALOPHEYEV S, et al. Influence of the weld thermal cycle on the grain structure of friction-stir joined 6061 aluminum alloy[J]. Materials Characterization, 2021, 178: 111202. doi: 10.1016/j.matchar.2021.111202

    [3]

    PRANGNELL P B, BOWEN J R, APPS P J. Ultra-fine grain structures in aluminium alloys by severe plastic deformation processing[J], Materials Science and Engineering A, 2004, 375–377: 178–185.

    [4]

    XU N, SONG Q N, BAO Y F. Investigation on microstructure development and mechanical properties of large-load and low-speed friction stir welded Cu-30Zn brass joint[J]. Materials Science & Engineering A, 2018, 726: 169 − 178.

    [5]

    Yi D, Mironov S, Sato Y S, et al. Effect of cooling rate on microstructure of friction-stir welded AA1100 aluminum alloy[J]. Philosophical Magazine, 2016, 96: 1965 − 1977. doi: 10.1080/14786435.2016.1185186

    [6]

    XU N, UEJI R, FUJII H. Dynamic and static change of grain size and texture of copper during friction stir welding[J]. Journal of Materials Processing Technology, 2016, 232: 90 − 99. doi: 10.1016/j.jmatprotec.2016.01.021

    [7] 温泉, 李文亚, 吴雪猛, 等. AA6056双轴肩搅拌摩擦焊接头非均匀性分析[J]. 焊接学报, 2023, 44(9): 88 − 94. doi: 10.12073/j.hjxb.20221129003

    WEN Quan, LI Wenya, WU Xuemeng, et al. Forming mechanism and processing of stationary upper shoulder BT-FSW[J]. Transactions of the China Welding Institution, 2023, 44(9): 88 − 94. doi: 10.12073/j.hjxb.20221129003

    [8]

    ESSA A R S, AHMED M M Z, MOHAMED A K Y A, et al. An analytical model of heat generation for eccentric cylindrical pin in friction stir welding[J]. Journal of Materials Research and technology, 2016, 5(3): 234 − 240. doi: 10.1016/j.jmrt.2015.11.009

    [9]

    IMAM M, SUN Y, FUJII H, et al. Deformation characteristics and microstructural evolution in friction stir welding of thick 5083 aluminum alloy[J]. The International Journal of Advanced Manufacturing Technology, 2018, 99: 663 − 681. doi: 10.1007/s00170-018-2521-9

    [10]

    LEFFERS T, RAY R K. The brass-type texture and its deviation from the copper-type texture[J]. Progress in Materials Science, 2009, 54: 351 − 396.

    [11] 许楠, 冯若男, 宋亓宁, 等. 微观组织对镁合金FSW焊缝应变硬化行为的影响[J]. 焊接学报, 2020, 41(11): 7 − 12.

    XU Nan, FENG Ruonan, SONG Qining, et al. Effects of microstructure on strain hardening behavior of friction stir welded magnesium alloy[J]. Transactions of the China Welding Institution, 2020, 41(11): 7 − 12.

    [12]

    YAZDIPOUR A, SHAFIEI M A, DEHGHANI K. Modeling the microstructural evolution and effect of cooling rate on the nanograins formed during the friction stir processing of Al5083[J]. Materials Science and Engineering: A, 2009, 527: 192 − 197. doi: 10.1016/j.msea.2009.08.040

    [13]

    GERLICH A, YAMAMOTO M, NORTH T. Strain rates and grain growth in Al 5754 and Al 6061 friction stir spot welds[J]. Metallurgical and Materials Transactions A, 2007, 38(6): 1291 − 1302. doi: 10.1007/s11661-007-9155-0

    [14]

    XU N, LIU L T, SONG Q N, et al. Improvement of microstructure and mechanical properties of rapid cooling friction stir-welded A1050 pure aluminum[J]. Journal of Wuhan University of Technology (Materials Science Edition), 2024, 39(1): 134 − 141. doi: 10.1007/s11595-024-2864-z

  • 期刊类型引用(5)

    1. 朱荣涛,刘天新,陶浩天,燕峰,胡素影,马北一,解志文. Al掺杂CoCrNiAlY金属黏结层的高温抗氧化行为研究. 辽宁科技大学学报. 2024(01): 16-24 . 百度学术
    2. 高继文,李永彬,黄晓望. 超声波冲击法对微弧火花沉积涂层性能的影响. 焊接. 2021(02): 52-56+64 . 百度学术
    3. 徐安阳,王晓明,朱胜,韩国峰,赵阳,郭迎春. 电火花沉积电极材料过渡机制及规律. 中国机械工程. 2021(08): 960-966 . 百度学术
    4. 徐安阳,王晓明,赵阳,朱胜,韩国峰. 电火花沉积重熔碾轧修整试验. 中国机械工程. 2020(14): 1741-1746 . 百度学术
    5. 徐安阳,王晓明,朱胜,赵阳,韩国峰. 电火花沉积电极材料过渡形态研究. 电加工与模具. 2019(06): 10-15 . 百度学术

    其他类型引用(3)

图(9)  /  表(2)
计量
  • 文章访问数:  52
  • HTML全文浏览量:  11
  • PDF下载量:  14
  • 被引次数: 8
出版历程
  • 收稿日期:  2024-03-14
  • 网络出版日期:  2025-05-05
  • 刊出日期:  2025-06-24

目录

    /

    返回文章
    返回