Enhancing mechanical properties and corrosion resistance through coating SiC during wire arc additive manufacturing of 2205 duplex stainless steel
-
摘要:
为解决电弧熔丝增材制造(WAAM)双相不锈钢中晶粒组织粗大和柱状晶外延生长,导致强度低、各向异性大和耐腐蚀性能下降问题,在WAAM 2205双相不锈钢中,将不同粒径 (100 nm和
1000 nm) SiC颗粒制成含量为0,2%和10%(质量分数)的乙醇基悬浮液,并逐层涂覆添加到焊接熔池中.结果表明,涂覆添加SiC悬浮液后,WAAM 2205双相不锈钢两相比例更加平衡,沿堆叠方向粗大柱状晶变为较细等轴晶,晶粒取向织构强度明显降低.涂覆后试样在打印方向和堆叠方向的屈服强度和拉伸极限强度明显提高,涂覆100 nm 10% SiC颗粒乙醇悬浮液的试样在打印方向和堆叠方向的屈服强度分别提高7.75%和15.51%,抗拉强度分别提高8.96%和17.16%,且其屈服强度和拉伸极限强度的各向异性较未涂覆试样的7.50%和7.75%分别下降到0.85%和0.81%,力学性能改善明显.同时因晶粒细化导致氧化膜成核位点增加,涂覆100 nm 10% SiC颗粒乙醇悬浮液的试样在3.5% NaCl(质量分数)溶液中的电荷转移电阻为未涂覆试样的256.79%,耐腐蚀性能也提高,为WAAM打印优异性能的金属构件提供了应用参考.Abstract:To address the issues of low mechanical strength, high anisotropy and reduced corrosion resistance in wire and arc additive manufacturing (WAAM) duplex stainless steel caused by coarse grains and columnar crystal epitaxial growth, SiC particles were introduced. In this paper, SiC particles with different particle sizes (100 and 1 000 nm) were prepared as ethanol-based suspensions containing 0, 2% and 10wt.% during the surfacing process of WAAM 2205 duplex stainless steel, which were added to the welding pool layer by layer. The results show that after adding SiC particles, the two phases ratio of WAAM 2205 duplex stainless steel was more balanced, the coarse columnar crystal structure along the stacking direction become a finer equiaxed crystal structure, and the texture intensity of grain orientation was significantly reduced. As result, the yield strength and ultimate tensile strength of the samples coated with SiC particles in the printing direction and stacking direction were significantly improved. The yield strength of the samples coated with 100 nm 10% SiC particle ethanol suspension in the printing direction and stacking direction increased by 7.75% and 15.51%, respectively, and the tensile strength increased by 8.96% and 17.16%, respectively. It is worth noting that the anisotropy of yield strength and tensile ultimate strength decreased from 7.50% and 7.75% of the uncoated sample to 0.85% and 0.81%, respectively, and the mechanical properties improved significantly. Noteworthy, the anisotropy of the yield strength and tensile ultimate strength decreased to 0.85% and 0.81%, respectively, compared with 7.50% and 7.75% of the uncoated sample. And the mechanical properties were significantly improved. Meanwhile, due to the increase of nucleation sites of oxide film caused by grain refinement, the charge transfer resistance of the sample coated with 100 nm 10% SiC particle ethanol suspension in 3.5% NaCl solution was 256.79% of that of the uncoated sample, and the corrosion resistance was also improved. This paper provides a reference for WAAM printing components with excellent comprehensive performance.
-
0. 序言
传统理念上的合金是以一种或两种金属元素作为主要元素(含量大于50%),其余的金属或非金属元素作为微量元素对合金性能进行改善. 随着元素种类的增多,合金中会析出复杂的中间相,合金性能会严重降低[1-2]. 1995年Huang等人[3]提出了新型多组元高熵合金设计理念,制备成的高熵合金具有较高的混合焓,形成的相数远低于普通合金,且会形成简单的体心立方和面心立方结构的固溶体,原因可能是合金内的混乱程度过高阻碍了金属间化合物的形成. 多组元高熵合金是一种新型的合金材料,经计算得到合理的合金配比,可以获得兼具高硬度、耐磨性和耐蚀性等各种优异性能的合金[4-5].
Nb作为微合金化元素具有较高的强度,可以改变合金的力学性能,对合金可以产生沉淀强化以及细小颗粒相的细晶强化作用[6]. 高熵合金的制备技术包括真空熔铸法、粉末冶金技术、表面改性技术等;块状高熵合金主要采用真空电弧炉熔炼和熔铸等方法制备[7],目前涉及Nb元素的研究讨论基本在铸造熔炼方法的基础上探讨合金的组织和性能[8]. 但合金尺寸有限,主要为小型块件,使用的金属元素大都比较昂贵,所以制造成本较高. 因此在低价的碳钢板表面上制备出大块高熵合金对实际应用具有很大的意义,文中研究重点为采用熔化极气体保护焊方法制备含Nb元素的高熵合金,并对其组织结构及性能进行研究讨论.
1. 试验方法
试验所采用的是纯度大于99.9%的Al,Cu,Cr,Ni,Nb合金粉末配制药芯焊丝的药粉,药粉需要事先烘干,因为药粉极易吸收水分,药粉使用前要经过严格检验,潮湿的药芯焊丝易产生气孔、裂纹等缺陷.
合金粉末按照预先设计好的比例(x值的摩尔比为0.4,0.6,0.8,1.0,记作Nb0.4,Nb0.6,Nb0.8,Nb1.0),配制成不同成分配比的药粉加入钢带中经轧制和拉拔制成ϕ2.4 mm的药芯焊丝,药粉填充率为35%,钢带成分如表1所示. 对低碳钢板表面采用机械打磨的方法去除氧化皮,并用无水乙醇擦拭干净,而后将制备的高熵药芯焊丝采用熔化极气体保护焊堆焊到低碳钢表面形成试件. 堆焊工艺参数为:堆焊电流160 A,堆焊电压24 V,堆焊速度8 cm/min,保护气流量12 L/min[9].
表 1 H08A钢带的化学成分(质量分数,%)Table 1. Chemical compositions of H08A steel stripC Si Mn S P Fe < 0.01 ≤ 0.03 0.30 ~ 0.55 ≤ 0.03 ≤ 0.03 余量 采用X-ray diffraction(XRD)衍射仪分析了堆焊层的相结构,具体参数为:纯铜靶材、管电压40 kV、管电流30 mA、扫描速率4°/min、扫描范围20° ~ 90°. 采用配备能谱仪(EDS)的SU8010型场发射扫描电子显微镜对晶粒结构的相组成进行观测. 采用显微硬度计研究了在9.8 N载荷作用下15 s的显微硬度,采用湿沙橡胶轮磨损试验机对堆焊层耐磨性进行测试,试验参数为:石英砂粒径为250 μm,转速240 r/min,磨损时间5 min. 采用BL410F型电子天平(1 mg)对试样磨损前后质量进行测试. 采用VSP-300电化学工作站,以饱和甘汞电极为参照电极,铂电极为辅助电极,扫描速度10 mV/min,测定了3.5%NaCl溶液中高熵合金堆焊层的极化曲线.
2. 试验结果与分析
根据热力学及几何学角度,Zhang等人[10]将Hume-Rothery定律应用于多组元高熵合金的成分设计. 结合多组元合金的原子尺寸差δ、混合焓ΔHmix、混合熵ΔSmix等参数提出了固溶体相形成规则.
$$ \Delta {S_{{\rm{mix}}}} = - R\mathop \sum\limits_{i = 1}^n {C_i}{\rm{ln}}{C_i} $$ (1) $$ \Delta {H_{{\rm{mix}}}} = \mathop \sum \limits_{i = 1,i \ne j}^n 4\Delta H_{ij}^{{\rm{mix}}}{C_i}{C_j} $$ (2) $$ \delta = 100\sqrt {\mathop \sum \limits_{i = 1}^n {C_i}{{\left( {1 - \frac{{{r_i}}}{{\bar r}}} \right)}^2}} \bar r = \mathop \sum \limits_{i = 1}^n {r_i}{C_i} $$ (3) 式中:Ci,Cj为第i,j种组分的摩尔分数;ΔHijmix为i和j二组元的液态混合焓;ri为第i组分的原子半径. 当1% < δ < 6.6%,−15 kJ/mol < ΔHmix < 5 kJ/mol,12 J/(mol·K) < ΔSmix < 17.5 J/(mol·K)时,合金易形成固溶体结构. Guo等人[11]用价电子浓度(VEC)预测面心立方(FCC)固溶体和体心立方(BCC)固溶体的形成规律,即
$$ {V_{{\rm{EC}}}} = \mathop \sum \limits_{i = 1}^n {C_i}{\left( {{V_{{\rm{EC}}}}} \right)_i} $$ (4) 式中:Ci为第i组分的摩尔分数;(VEC)i是第i种成分的原子核外价电子数. VEC > 8.0时,有利于FCC固溶体的形成,VEC < 6.87时,有利于BCC固溶体的形成,6.87 < VEC < 8.0时,BCC和FCC两固溶体趋于共存. 试验各成分参数值如表2所示. 根据图1高熵合金中相应参数可知,该试验所设计体系为高熵合金,可能BCC和FCC两固溶体共存.
表 2 各成分的理论参数值Table 2. Theoretical parameter values of each component成分 混合熵
ΔS/(J·mol−1·K−1)原子尺寸差 δ(%) 混合焓 ΔH/(kJ·mol−1) 价电子浓度 VEC Nb0.4 14.58 5.98 −7.16 7.41 Nb0.6 14.77 6.14 −8.39 7.32 Nb0.8 14.87 6.26 −9.44 7.24 Nb1.0 14.90 6.35 −10.33 7.16 2.1 Nb含量对相结构的影响
图2为FeAlCuCrNiNbx系高熵合金堆焊层X射线衍射对比分析. 由图2可知,堆焊层由BCC固溶体和少量MC共晶碳化物组成,堆焊层合金主体为BCC固溶体,通过PDF标准卡片对比可得,此衍射峰与Fe-Cr相吻合,表明FeAlCuCrNiNbx系高熵合金在堆焊过程中形成的BCC固溶体应以Fe-Cr相为主. 而在衍射峰2θ = 34.730°和2θ = 40.316°附近出现的小峰为FCC固溶体,如图2b为图2a中虚线部分放大图,可得少量的MC共晶碳化物. 经对比MC共晶碳化物的X射线衍射峰主要为NbC 相(PDF:32-1383)[12],随着Nb含量的增加,MC共晶碳化物先增加后减少,衍射峰没有发生偏移现象,与之前理论参数值计算相吻合.
2.2 Nb含量对微观组织的影响
图3为不同Nb含量的FeAlCuCrNiNbx系高熵合金堆焊层的组织形貌. 堆焊层为典型的枝晶组织,其组织由灰色的枝晶(DR)及白色的枝晶间(ID)结构组成,EDS成分分析如表3所示,DR富含Fe元素、Cr元素、Ni元素而贫化Cu元素,ID富含Cu元素、Nb元素而Fe元素、Cr元素、Ni元素有部分烧损. 通过Nb含量来判断析出相是NbC(图3的相关标识区),因为Nb是强碳化物形成元素,C含量误差较大,且基体在高能电弧的稀释作用下使得Fe含量升高[13]. 结合XRD分析可知,堆焊层组织主要为体心立方结构的Fe-Cr相,小颗粒块状的NbC弥散分布于Fe-Cr基体中[12],随着Nb含量的增加,组织中晶界先增多后减小,晶粒先减小后增大,x = 1.0时,晶粒尺寸大小不一,分布不均匀. 由于Nb是高熔点元素,在电弧堆焊中需要的能量也高,基体在高能量的电弧中,熔池流动性更好,随着Nb含量的增加,在MC共晶碳化物中聚集的Nb元素逐渐回溶于BCC固溶体中[6].
表 3 FeAlCuCrNiNbx高熵合金堆焊层不同区域的元素含量(原子分数,%)Table 3. Element content of different regions in FeAlCuCrNiNbx high entropy alloy surfacing layer合金 区域 Fe Al Cu Cr Ni Nb C 沉淀物 44.38 22.74 1.75 2.69 2.29 10.85 15.30 FeAlCuCrNiNb0.4 DR 74.05 1.99 6.69 8.56 7.13 1.58 — ID 69.84 1.58 13.02 5.92 6.49 3.15 — 沉淀物 16.91 15.37 2.17 2.76 3.60 42.66 16.53 FeAlCuCrNiNb0.6 DR 73.47 2.12 5.91 8.15 7.41 2.94 — ID 66.92 2.96 11.50 7.73 6.79 4.10 — 沉淀物 11.70 11.77 1.66 2.23 3.36 49.58 19.70 FeAlCuCrNiNb0.8 DR 71.93 1.71 6.84 8.90 7.52 3.10 — ID 66.62 2.48 11.91 7.93 6.47 4.59 — 沉淀物 16.69 18.25 2.18 2.84 2.98 38.39 18.67 FeAlCuCrNiNb1.0 DR 73.99 1.96 6.18 8.22 7.37 2.28 — ID 69.36 1.90 12.38 6.55 6.09 3.72 — 2.3 Nb含量对硬度和耐磨性的影响
图4为FeAlCuCrNiNbx系高熵合金堆焊层横截面显微硬度分布. 从图4可以直观的看到,横截面显微硬度随着Nb含量的增加呈先增大后减小的趋势,当Nb0.8时显微硬度值最高,为602 HV,约为基材硬度的2.6倍. 另外,热影响区显微硬度与焊缝表面显微硬度变化趋势相同,并且热影响区的显微硬度都比焊缝表面显微硬度小. 图5为FeAlCuCrNiNb0.8高熵合金横截面组织形貌,由于热影响区属于不完全结晶区,吸收的热量大多用于晶粒生长,使得晶粒易粗大,致使其韧性、显微硬度降低[14]. 而焊缝为完全结晶区,组织细化程度要优于热影响区,因此热影响区显微硬度比焊缝显微硬度小.
图6为FeAlCuCrNiNbx系高熵合金堆焊层平均显微硬度与磨损量对比,堆焊层显微硬度值随着Nb含量的增加呈现先增大后减小的趋势. Nb0.8时,平均硬度最大,为596 HV,磨损量曲线呈先减小后增大的趋势,且磨损量最小,为0.30 g. 这说明此材料晶粒越小硬度越高,合金的耐磨性越好. 基体的平均硬度为232 HV,均低于各成分堆焊层合金的平均硬度,Nb是强碳化物形成元素,原子半径相对较大,发生晶格畸变,使得位错运动受阻,致使高熵合金硬度远高于基体[15].
合金中晶体结构为BCC的Fe-Cr固溶体产生固溶强化作用,以及细小颗粒的NbC相沉淀作用,使得合金显微硬度升高. 比较各元素原子半径R和Fe-Cr晶格间隙可知存在如下关系:R(Nb) > R(Al) > R(Cu) > R(Ni) > R(Cr) > R(Fe) > 晶格间隙.
由于Fe,Cr原子尺寸差、电负性小于其它原子,因此其它金属原子不可能以间隙固溶体方式存在于晶胞内,极有可能以置换固溶体形式存在于堆焊层中. 相对于其它元素,Nb原子半径较大,加入一定量的Nb元素可能产生置换固溶体,随着Nb元素增多合金体系的熵值也会随着增大,使得各组元之间的相容性增大,促进固溶体相的形成,从而抑制金属间化合物的析出. 高熵合金中存在较多的就是固溶体相,各组元的原子差异,使得固溶体晶格畸变加大,固溶强化效果增大,Gibbs自由能降低,合金的强度、硬度显著的提高,合金混乱程度增加,元素偏析程度降低,相更稳定[16]. 试验合金体系存在两种强化机理分别为固溶强化和沉淀强化,两种机制共同作用强化了高熵合金的性能.
2.4 Nb含量对耐蚀性的影响
图7为FeAlCuCrNiNbx系高熵合金堆焊层与304不锈钢在3.5 %NaCl溶液中的极化曲线. 由图7可知,不同Nb含量的FeAlCuCrNiNbx系高熵合金的自腐蚀电位和自腐蚀电流密度均不一致,随着Nb含量的升高,堆焊层合金自腐蚀电流密度逐渐减小,合金的腐蚀速率逐步减慢[17],如表4所示. FeAlCuCrNiNb1.0耐蚀性最好,具有最低的自腐蚀电流密度,约为7.770 7 × 10−6 mA/cm2,具有最高的自腐蚀电位,约为−0.728 32 V. 与304不锈钢相比,堆焊层具有更好的耐蚀性能,304不锈钢虽腐蚀电位稍高,腐蚀开始较难,但自腐蚀电流密度最大,腐蚀速率最快. 一般来说,低自腐蚀电流密度、宽的钝化区间和“正”自腐蚀电位可以表现出优秀的耐蚀性能[18-19]. 自腐蚀电位是反映反应热力学的参数,电位越高,腐蚀反应开始越困难. 自腐蚀电流密度是反映反应动力学的物理参数;自腐蚀电流密度越小,腐蚀速率就会越慢[20].
表 4 FeAlCuCrNiNbx高熵合金自腐蚀电位和电流密度Table 4. Self-corrosion potential and current density of the FeAlCuCrNiNbx high entropy alloy合金 腐蚀电位E/V 自腐蚀电流密度I/ (mA·cm−2) 304不锈钢 −0.900 8 1.648 6 × 10−4 FeAlCuCrNiNb0.4 −0.583 7 8.980 7 × 10−5 FeAlCuCrNiNb0.6 −0.707 73 6.308 4 × 10−5 FeAlCuCrNiNb0.8 −0.663 73 4.192 9 × 10−5 FeAlCuCrNiNb1.0 −0.728 32 7.770 7 × 10−6 图8为FeAlCuCrNiNbx系高熵合金堆焊层腐蚀形貌SEM图. 从图8可知,FeAlCuCrNiNbx系高熵合金的耐蚀性强于304不锈钢,304不锈钢表面腐蚀坑居多,腐蚀形貌不规整,耐蚀性能较差. 而FeAlCuCrNiNbx系高熵合金组织腐蚀多发生在枝晶间区,由DR和ID的EDS成分对比可知合金在枝晶间区发生了偏析,使得贫Cu的枝晶区和富Cu的枝晶间区形成了原电池,枝晶间区容易先被腐蚀掉. 电化学腐蚀过程中合金的物相越少,结构越单一,合金的耐蚀性越高[21]. 一方面,BCC固溶体主要含有大量的Fe-Cr相,Cr,Ni元素在氧化介质中易于钝化,有利于合金表面钝化膜的形成,从而阻止堆焊层合金腐蚀的进一步进行;另一方面,单一的固溶体可以使得合金耐蚀性能提高[22].
通过上述分析发现:对于耐磨性而言,随着Nb元素含量增多,通过固溶强化和沉淀强化共同作用,合金的耐磨性呈先升高后下降的趋势,x = 0.8时耐磨性最好;而对于耐蚀性而言,增加Nb元素含量会使合金耐蚀性有所提高,x = 1.0时合金耐蚀性最好.
3. 结论
(1)FeAlCuCrNiNbx高熵合金体系以Fe-Cr固溶体为主,其晶体结构为体心立方. 另有少量MC碳化物析出,随Nb含量增加而先增多后减少.
(2)随着Nb元素含量增多,合金晶粒尺寸呈先变小后增大的趋势. 当x = 0.8时晶粒最小,晶界最多,力学性能达到最佳匹配,此时显微硬度最大为602 HV,磨损量为0.30 g. 堆焊层合金存在固溶强化和沉淀强化两种机制.
(3)对于合金的耐蚀性而言,随着Nb含量的增加,耐蚀性增强,当x = 1.0时合金耐蚀性最好,优于常用304不锈钢.
-
图 1 WAAM 2205双相不锈钢试样的制备
Figure 1. Preparation of WAAM 2205 duplex stainless steel samples. (a) arc wire additive manufacturing experimental platform; (b) cooling method diagram; (c) geometric shape and size of the sample at the cutting position; (d) WAAM thin-walled sample without SiC particles; (e) WAAM thin-walled sample coating with 100 nm 10% SiC particles
图 5 WAAM 2205双相不锈钢的取向形貌图和极图
Figure 5. Orientation maps and PFs of WAAM 2205 duplex stainless steel samples. (a) the orientation diagram and pole figure of ferrite in xOy plane of the sample without SiC particles; (b) the orientation diagram and pole figure of austenite in xOy plane of the sample without SiC particles; (c) the orientation diagram and pole figure of ferrite in xOy plane of the sample coating with 100 nm10% SiC particles; (d) the orientation diagram and pole figure of austenite in xOy plane of the sample coating with 100 nm10% SiC particles
表 1 2205双相不锈钢焊丝元素含量(质量分数,%)
Table 1 Element content of 2205 wire
C Mn Si Cr Ni S P Fe 0.03 0.50 0.9 21.5 7.5 0.03 0.03 余量 表 2 WAAM 2205双相不锈钢工艺参数
Table 2 Process parameters of WAAM 2205 duplex stainless steel
焊丝倾斜角
θ/(°)保护气流速
vg/(L·min−1)焊接速度
v/(mm·s−1)沉积电流
I/A沉积电压
U/V层厚
h/mm90 15 6 160 24 2 表 3 WAAM 2205双相不锈钢样品力学性能
Table 3 Summary of mechanical properties of WAAM 2205 duplex stainless steel samples
粒径d/nm 颗粒含量
w(%)抗拉强度 Rm /MPa 屈服强度 ReL /MPa x 方向 z 方向 各向异性 δ(%) x 方向 z 方向 各向异性 δ(%) — 0 769.88 710.21 7.75 530.11 490.33 7.50 100 2 814.91 783.60 3.84 550.34 535.09 2.77 100 10 838.88 832.09 0.81 571.22 566.39 0.85 1000 2 799.75 760.06 4.96 539.11 521.37 3.29 1000 10 824.83 815.25 1.16 560.17 554.52 1.01 -
[1] MUTHUPANDI V, SRINIVASAN P B, SESHADRI S K, et al. Effect of weld metal chemistry and heat input on the structure and properties of duplex stainless steel welds[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2003, 358(1-2): 9 − 16. doi: 10.1016/S0921-5093(03)00077-7
[2] SHERIF E S M, POTGIETER J H, COMINS J D, et al. The beneficial effect of ruthenium additions on the passivation of duplex stainless steel corrosion in sodium chloride solutions[J]. Corrosion Science, 2009, 51(6): 1364 − 1371. doi: 10.1016/j.corsci.2009.03.022
[3] TAKEI T, YABE M, WEI F G. Effect of cooling condition on the intergranular corrosion resistance of UNS S32506 duplex stainless steel[J]. Corrosion Science, 2017, 122: 80 − 89. doi: 10.1016/j.corsci.2017.03.018
[4] GHOSH S, KAIN V. Effect of surface machining and cold working on the ambient temperature chloride stress corrosion cracking susceptibility of AISI 304L stainless steel[J]. Materials Science and Engineering A-Structural Materials: Properties, Microstructure and Processing, 2010, 527(3): 679 − 683. doi: 10.1016/j.msea.2009.08.039
[5] 李科, 牛犇, 潘琳琳, 等. 热输入对电弧增材制造超级双相不锈钢组织与性能的影响[J]. 焊接学报, 2023, 44(10): 94 − 101. doi: 10.12073/j.hjxb.20221214003 LI Ke, NIU Ben, PAN Linlin, et al. Effect of heat input on microstructure and mechanical properties of wire arc additive manufactured super duplex stainless steel[J]. Transactions of the China Welding Institution, 2023, 44(10): 94 − 101. doi: 10.12073/j.hjxb.20221214003
[6] XU J L, DENG B, SUN T, et al. Evaluation of the susceptibility to intergranular attack of 2205 duplex stainless steel by DL-EPR method[J]. Acta Metallurgica Sinica, 2010, 46(3): 380 − 384. doi: 10.3724/SP.J.1037.2010.00380
[7] LI J Y, NAGALINGAM A P, YEO S H. Welding duplex stainless steels — a review of current recommendations[J]. Welding in the World, 2012, 56(5/6): 65 − 76.
[8] WESTIN E M, PUTZ A, MADERTHONER A, et al. Solidification cracking in duplex stainless steel flux-cored arc welds Part 1—cracking in 30-mm-thick material welded under high restraint[J]. Welding in the World, 2022, 66(12): 2405 − 2423. doi: 10.1007/s40194-022-01370-w
[9] 黄锨航, 易江龙, 曹艺, 等. 定向能量沉积增材制造双相不锈钢微观组织与性能研究进展[J]. 材料导报, 2023, 37(S1): 388 − 394. HUANG Xianhang, YI Jianglong, CAO Yi, et al. Research progress in microstructure and properties of duplex stainless steels by directed energy deposition[J]. Materials Reports, 2023, 37(S1): 388 − 394.
[10] ZHANG Y, WU L M, GUO X Y, et al. Additive manufacturing of metallic materials: a review[J]. Journal of Materials Engineering and Performance, 2018, 27: 1 − 13. doi: 10.1007/s11665-017-2747-y
[11] POSCH G, CHLADIL K, CHLADIL H. Material properties of CMT—metal additive manufactured duplex stainless steel blade-like geometries[J]. Welding in the World, 2017, 61(5): 873 − 882. doi: 10.1007/s40194-017-0474-5
[12] JIANG P F, JI R, NIE M H, et al. A high deposition efficiency method for wire arc additive manufacturing[J]. Materials Science and Technology, 2023, 39(13): 1640 − 1644. doi: 10.1080/02670836.2023.2177805
[13] LIU J N, XU Y L, GE Y, et al. Wire and arc additive manufacturing of metal components: a review of recent research developments[J]. International Journal of Advanced Manufacturing Technology, 2020, 111(1-2): 149 − 198. doi: 10.1007/s00170-020-05966-8
[14] 梁晖, 李攀, 沈鑫, 等. 超声冲击对电弧增材制造铝合金应力影响的有限元分析[J]. 焊接学报, 2023, 44(10): 79 − 85. doi: 10.12073/j.hjxb.20230304003 LIANG Hui, LI Pan, SHEN Xin, et al. Finite element analysis of the effect of ultrasonic impact on the stress of aluminum alloy arc additive manufacturing[J]. Transactions of the China Welding Institution, 2023, 44(10): 79 − 85. doi: 10.12073/j.hjxb.20230304003
[15] 夏玉峰, 张雪, 廖海龙, 等. 电弧熔丝增材制造钛/铝复合材料的组织与性能[J]. 焊接学报, 2021, 42(8): 18 − 24. doi: 10.12073/j.hjxb.20210422001 XIA Yufeng, ZHANG Xue, LIAO Hailong, et al. Microstructure and properties of Ti/Al composites materials fabricated by wire and arc additive manufacturing[J]. Transactions of the China Welding Institution, 2021, 42(8): 18 − 24. doi: 10.12073/j.hjxb.20210422001
[16] BERMINGHAM M, STJOHN D, EASTON M, et al. Revealing the mechanisms of grain nucleation and formation during additive manufacturing[J]. JOM, 2020, 72: 1065 − 1073. doi: 10.1007/s11837-020-04019-5
[17] TAN Q, LIU Y, FAN Z, et al. Effect of processing parameters on the densification of an additively manufactured 2024 Al alloy[J]. Journal of Materials Science & Technology, 2020, 58: 34 − 45.
[18] BABY J, AMIRTHALINGAM M. Microstructural development during wire arc additive manufacturing of copper-based components[J]. Welding in the World, 2020, 64(2): 395. doi: 10.1007/s40194-019-00840-y
[19] YU J, QIN T, LIN X, et al. Electrochemical dissolution and passivation of laser additive manufactured Ti6Al4V controlled by elements segregation and phases distribution[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(12): 3739 − 3751. doi: 10.1016/S1003-6326(21)65710-2
[20] WU B T, PAN Z X, DING D H, et al. A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement[J]. Journal of Manufacturing Processes, 2018, 35: 127 − 139. doi: 10.1016/j.jmapro.2018.08.001
[21] DING D H, PAN Z X, DOMINIC C, et al. Wire-feed additive manufacturing of metal components: technologies, developments and future interests[J]. International Journal of Advanced Manufacturing Technology, 2015, 81(1-4): 465 − 481. doi: 10.1007/s00170-015-7077-3
[22] ABOULKHAIR N T, SIMONELLI M, PARRY L, et al. 3D printing of aluminium alloys: Additive manufacturing of aluminium alloys using selective laser melting[J]. Progress in Materials Science, 2019, 106: 100578. doi: 10.1016/j.pmatsci.2019.100578
[23] TAN Q Y, YIN Y, PRASAD A, et al. Demonstrating the roles of solute and nucleant in grain refinement of additively manufactured aluminium alloys[J]. Additive Manufacturing, 2022, 49: 102516. doi: 10.1016/j.addma.2021.102516
[24] EASTON M, STJOHN D. Grain refinement of aluminum alloys: Part I. the nucleant and solute paradigms—a review of the literature[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 1999, 30: 1613 − 1623.
[25] SONG B, DONG S J, CODDET P, et al. Microstructure and tensile behavior of hybrid nano-micro SiC reinforced iron matrix composites produced by selective laser melting[J]. Journal of Alloys and Compounds, 2013, 579: 415 − 421. doi: 10.1016/j.jallcom.2013.06.087
[26] ZOU Y M, TAN C L, QIU Z G, et al. Additively manufactured SiC-reinforced stainless steel with excellent strength and wear resistance[J]. Additive Manufacturing, 2021, 41: 101971. doi: 10.1016/j.addma.2021.101971
[27] POLUBOYAROV V A, KOROTAEVA Z A, ZHDANOK A A, et al. In-mold modification of iron: Influence of nanomodifiers on gray-iron performance. Part 3[J]. Steel in Translation, 2015, 45: 723 − 728. doi: 10.3103/S0967091215100137
[28] 王涛. 改性纳米SiC粉体强化铸造304不锈钢力学性能和耐蚀性能的研究[D]. 大连: 大连交通大学, 2011. WANG Tao. Research on the mechanical properties and corrosion resistance of surface modified SiC nanopowders reinforced cast austenitic stainless steel[D]. Dalian: Dalian Jiaotong University, 2011.
[29] BRAMFITT B L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron[J]. Metallurgical Transactions, 1970, 1: 1987 − 1995. doi: 10.1007/BF02642799
[30] HU Y, SHI Y H, SUN K, et al. Effect of filler Si content on the microstructure and properties of underwater hyperbaric welded duplex stainless steel[J]. Journal of Materials Processing Technology, 2020, 279: 116548. doi: 10.1016/j.jmatprotec.2019.116548
[31] LI Q, QIU F, DONG B X, et al. Processing, multiscale microstructure refinement and mechanical property enhancement of hypoeutectic Al–Si alloys via in situ bimodal-sized TiB2 particles[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2020, 777: 139081. doi: 10.1016/j.msea.2020.139081
[32] HEJRIPOUR F, BINESH F, HEBEL M, et al. Thermal modeling and characterization of wire arc additive manufactured duplex stainless steel[J]. Journal of Materials Processing Technology, 2019, 272: 58 − 71. doi: 10.1016/j.jmatprotec.2019.05.003
[33] ALMANGOUR B, GRZESIAK D, YANG J M. Scanning strategies for texture and anisotropy tailoring during selective laser melting of TiC/316L stainless steel nanocomposites[J]. Journal of Alloys and Compounds, 2017, 728: 424 − 435. doi: 10.1016/j.jallcom.2017.08.022
[34] GHAFFARI M, NEMANI A V, SHAKERIN S, et al. Grain refinement and strengthening of PH 13-8Mo martensitic stainless steel through TiC/TiB2 inoculation during wire arc additive manufacturing[J]. Materialia, 2023, 28: 101721. doi: 10.1016/j.mtla.2023.101721
[35] STJOHN D H, QIAN M, EASTON M A, et al. The interdependence theory: the relationship between grain formation and nucleant selection[J]. Acta Materialia, 2011, 59(12): 4907 − 4921. doi: 10.1016/j.actamat.2011.04.035
[36] ZADEH A S. Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall–Petch effect[J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2012, 531: 112 − 118. doi: 10.1016/j.msea.2011.10.043
[37] LIN Y M, LU J, WANG L P, et al. Surface nanocrystallization by surface mechanical attrition treatment and its effect on structure and properties of plasma nitrided AISI 321 stainless steel[J]. Acta Materialia, 2006, 54(20): 5599 − 5605. doi: 10.1016/j.actamat.2006.08.014
[38] GUPTA R K, BIRBILIS N. The influence of nanocrystalline structure and processing route on corrosion of stainless steel: a review[J]. Corrosion Science, 2015, 92: 1 − 15. doi: 10.1016/j.corsci.2014.11.041