Numerical simulation of hybrid additive and subtractive manufacturing and evolution behavior of stress and deformation
-
摘要:
增材制造构件的最终成形精度不仅取决于增材过程中的应力累积及宏观变形,而且和减材过程中的应力释放与再分布有重要的关系.为此,建立了增减材复合制造的联合模拟仿真方法,阐明了增材制造过程中的应力累积行为,及其在后续减材过程应力释放及二次变形规律.结果表明,电弧增材制造过程中在成形的最初几层以及最后的冷却阶段在零件和基板的交界位置处于三向拉应力;在铣削减材过程中,增材制造的残余应力逐渐释放并重新分布,最大残余应力的位置改变并且拉应力减小,同时在铣削过程中零件发生二次变形,零件两端变形量大而中间变形量小.文中提出的增减材联合仿真方法对最终成形零件的变形调控提供理论指导.
Abstract:The final forming accuracy of additive manufacturing components depends not only on the stress accumulation and deformation during the additive manufacturing process, but also on the stress release and redistribution during milling.Therefore, a joint simulation method of hybrid additive and subtractive manufacturing was established, and the stress accumulation behavior in the process of additive manufacturing and its stress release and secondary deformation law in the subsequent material removal process were expounded. The results show that, in the process of arc additive manufacturing, there is a three-dimensional tensile stress at the interface between the part and the substrate in the first few layers and the final cooling stage. In the process of milling additive manufacturing, the residual stress is gradually released and redistributed, and the position of the maximum residual stress changes and the tensile stress decreases. At the same time, in the process of milling, the part undergoes secondary deformation, with large deformation at both ends and small deformation in the middle. The joint simulation method of hybrid additive and subtractive manufacturing proposed in this paper provides theoretical guidance for the deformation control of the final formed part.
-
-
表 1 6061铝合金材料参数
Table 1 Material properties of 6061 aluminum alloy
温度
T/K比热容
c/(J·kg−1·℃−1)传导率
λ/(W·m−1·℃−1)膨胀系数
aj/10−5 K−1弹性系数
E/GPa塑性系数
R/MPa293 728 176 2.22 71 300 373 795 180 2.38 65 284 573 963 188 2.53 49 100 773 1290 198 2.69 40 30 973 1580 200 3.02 28 10 表 2 6061铝合金J-C模型参数
Table 2 Johnson-Cook plasticity model parameters for 6061 alumimum alloy
屈服强度
Rel/MPa硬化模量
ε/MPaC n m $ {\varepsilon }_{0} $ 熔点
TC/K室温
T/K324 114 0.0128 0.42 1.34 1 893 293 表 3 6061铝合金J-C失效模型参数
Table 3 Johnson-Cook damage model parameters for 6061 aluminum alloy
$ {d}_{1} $ $ {d}_{2} $ $ {d}_{3} $ $ {d}_{4} $ $ {d}_{5} $ $ {\varepsilon }_{0} $ 熔点TC/K 室温T/K −0.77 1.45 −0.47 0 1.6 1 893 293 -
[1] SONG Y A, PARK S, CHOI D, et al. 3D welding and milling : Part I - a direct approach for freeform fabrication of metallic prototypes[J]. International Journal of Machine Tools and Manufacture, 2005, 45(9): 1057-1062.
[2] KARUNAKARAN K P, SURYAKUMAR S, PUSHPA V, et al. Low cost integration of additive and subtractive processes for hybrid layered manufacturing[J]. Robotics and Computer-Integrated Manufacturing, 2010, 26(5): 490 − 499.
[3] SADEGHIFAR M, JAVIDIKIA M, LOUCIF A, et al. Experimental and numerical analyses of residual stress redistributions in large steel dies: Influence of tempering cycles and rough milling[J]. Journal of Materials Research and Technology, 2023, 24: 395 − 406. doi: 10.1016/j.jmrt.2023.03.044
[4] GE G, XIAO Y, FENG X, et al. An efficient prediction method for the dynamic deformation of thin-walled parts in flank milling[J]. Computer-Aided Design, 2022, 152: 103401. doi: 10.1016/j.cad.2022.103401
[5] XIE R, CHEN G, ZHAO Y, et al. In-situ observation and numerical simulation on the transient strain and distortion prediction during additive manufacturing[J]. Journal of Manufacturing Processes, 2019, 38: 494 − 501. doi: 10.1016/j.jmapro.2019.01.049
[6] XIE R, SHI Q , CHEN G. Improved distortion prediction in additive manufacturing using an experimental-based stress relaxation model[J]. Journal of Materials Science & Technology, 2020, 59: 83 − 91.
[7] 韩文涛, 林健, 雷永平, 等. 不同层间停留时间下电弧增材制造2Cr13薄壁件热力学行为[J]. 焊接学报, 2019, 40(12): 47 − 52. HAN Wentao, LIN Jian, LEI Yongping, et al. Thermodynamic behavior of 2Cr13 thin-walled components in arc additive manufacturing under different inter-layer dwell times[J]. Transactions of the China Welding Institution, 2019, 40(12): 47 − 52.
[8] DING J, COLEGROVE P, MEHNEN J, et al. Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts[J]. Computational Materials Science, 2011, 50(12): 3315 − 3322. doi: 10.1016/j.commatsci.2011.06.023
[9] DENLINGER E R, MICHALERIS P. Mitigation of distortion in large additive manufacturing parts[J]. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Enginee, 2017, 231(6): 983 − 993. doi: 10.1177/0954405415578580
[10] SUN J, HENSEL J, KöHLER M, et al. Residual stress in wire and arc additively manufactured aluminum components[J]. Journal of Manufacturing Processes, 2021, 65: 97 − 111. doi: 10.1016/j.jmapro.2021.02.021
[11] HUANG W, WANG Q, MA N, et al. Distribution characteristics of residual stresses in typical wall and pipe components built by wire arc additive manufacturing[J]. Journal of Manufacturing Processes, 2022, 82: 434 − 447. doi: 10.1016/j.jmapro.2022.08.010
[12] LINDGREN L E. Numerical modelling of welding[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(48): 6710 − 6736.
[13] XIE R, ZHAO Y, CHEN G, et al. Development of efficient distortion prediction numerical method for laser additive manufactured parts[J]. Journal of Laser Applications, 2019, 31(2):022314.
[14] HODGE N E, FERENCZ R M , SOLBERG J M. Implementation of a thermomechanical model for the simulation of selective laser melting[J]. Computational Mechanics, 2014, 54(1): 33 − 51.
[15] HEIGEL J C, MICHALERIS P, REUTZEL E W. Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of Ti–6Al–4V[J]. Additive Manufacturing, 2015, 5: 9 − 19. doi: 10.1016/j.addma.2014.10.003
[16] SALONITIS K, D'ALVISE L, SCHOINOCHORITIS B, et al. Additive manufacturing and post-processing simulation: laser cladding followed by high speed machining[J]. International Journal of Advanced Manufacturing, 2016, 85(9-12): 2401 − 2411. doi: 10.1007/s00170-015-7989-y
[17] 赵宇辉, 高孟秋, 赵吉宾, 等. 基于有限元模型的增减材一体化复合制造技术热力耦合研究[J]. 机械工程学报, 2022, 58(15): 274 − 282. doi: 10.3901/JME.2022.15.274 ZHAO Yuhui, GAO Mengqiu, ZHAO Jibin, et al. Study on thermo mechanical coupling of the hybrid additive and subtractive manufacturing based on finite element model[J]. Journal of Mechanical Engineering, 2022, 58(15): 274 − 282. doi: 10.3901/JME.2022.15.274
[18] SUNNY S, MATHEWS R, GLEASON G, et al. Effect of metal additive manufacturing residual stress on post-process machining-induced stress and distortion[J]. International Journal of Mechanical Sciences, 2021, 202-203: 106534. doi: 10.1016/j.ijmecsci.2021.106534
[19] WEBER D, KIRSCH B, CHIGHIZOLA C R, et al. Investigation on the scale effects of initial bulk and machining induced residual stresses of thin walled milled monolithic aluminum workpieces on part distortions: experiments and finite element prediction model[J]. Procedia CIRP, 2021, 102: 337 − 342. doi: 10.1016/j.procir.2021.09.058
[20] LANDWEHR M, SCHMID S, HOLLA V, et al. The finite cell method for the prediction of machining distortion caused by initial residual stresses in milling[J]. Procedia CIRP, 2021, 102: 144 − 149. doi: 10.1016/j.procir.2021.09.025
[21] ALIPOORAMIRABAD H, PARADOWSKA A, GHOMASHCHI R, et al. Investigating the effects of welding process on residual stresses, microstructure and mechanical properties in HSLA steel welds[J]. Journal of Manufacturing Processes, 2017, 28: 70 − 81. doi: 10.1016/j.jmapro.2017.04.030
[22] 陈健, 吕林, 方锴. 超声冲击改善6061铝合金焊接残余应力的数值模拟[J]. 焊接学报, 2013, 34(12): 88 − 92. CHEN Jian, LYU Lin, FANG Kai. Numerical simulation of ultrasonic impact on improving welding residual stress in 6061 aluminum alloy[J]. Transactions of the China Welding Institution, 2013, 34(12): 88 − 92.
[23] LU X, LIN X, CHIUMENTI M, et al. Finite element analysis and experimental validation of the thermomechanical behavior in laser solid forming of Ti-6Al-4V[J]. Additive Manufacturing, 2018, 21: 30 − 40. doi: 10.1016/j.addma.2018.02.003
[24] 王海龙,王素娟. 6061铝合金超精密切削仿真与实验研究[J]. 机械设计与制造, 2023(7): 147 − 150. WANG Hailong, WANG Sujuan. Simulation and experimental study of ultra-precision cutting of 6061 aluminum alloy[J]. Machinery Design & Manufacture, 2023(7): 147 − 150.