Research progress on laser joining of brittle and transparent materials
-
摘要:
脆硬性透明材料连接技术已广泛应用于航空航天、电子封装和传感器等领域,开展脆硬性透明材料间的连接技术研究,具有重要的学术和工程应用价值.激光微连接作为一种新兴的连接技术,相对于传统焊接方法,具有高精度、高强度、高可靠、高效率等优点,文中介绍了脆硬性透明材料连续激光和脉冲激光连接技术的研究进展及应用,分析了不同类型的激光连接脆硬性透明材料的机理,总结了工艺参数对接头微观组织和力学性能的影响规律. 最后,文中讨论了当前激光连接脆硬性材料面临的挑战,并基于个人观点,讨论了脆硬性透明材料激光连接的发展前景和展望.
Abstract:The joining technology of brittle and transparent materials has been widely applied in aerospace, electronic packaging, and sensor industries. Research on the joining technology of transparent materials holds significant academic and engineering application value. As an emerging joining method, laser micro-joining offers advantages over traditional welding methods, including high precision, superior strength, enhanced reliability, and improved efficiency. This paper comprehensively reviewed the research progress and applications of continuous-wave and pulsed laser joining technologies for brittle and transparent materials. The mechanisms of different types of laser joining for brittle and transparent materials were analyzed, and the influence of process parameters on joint microstructure and mechanical properties was summarized. Finally, challenges in the current of laser joining of brittle and transparent materials were discussed. Moreover, future development directions for laser joining of brittle and transparent materials were provided based on the authors’ insights.
-
Keywords:
- brittle and transparent material /
- continuous-wave laser /
- pulsed laser /
- joining
-
0. 序言
随着工业界对高效焊接工艺的不断追求,热丝气体保护电弧焊工艺受到广泛的关注. 传统热丝焊工艺主要是针对非熔化极气体保护焊GTAW的. 填充焊丝经过一对电极后进入熔池,在电极之间施加电压,则会有电流流过填充焊丝,产生的电阻热可以预热填充焊丝,从而有效提高熔敷效率. 也可以把高频感应线圈套在填充焊丝外部,既消除旁路预热电路带来的磁偏吹影响,还可以适用于低电阻率的焊丝,填充送丝速度可以达到冷丝焊工艺的3倍左右[1-2]. 可以扩大焊接电流的合理范围[3],并且热丝 GTAW 焊具有更高的焊缝沉积速率和优良的焊缝形状[4]. 通过控制高频输出电流,还可以调整焊接热输入. 热丝TIG焊工艺有多种不同方案,但由于主弧是TIG电弧,单纯依靠填充焊丝提高效率有限. 可以采用双钨极耦合的方案[5],或者采用 TIG 与等离子弧耦合及 TIG 与激光耦合等具备高密度能量热源的方案[6-9].
北京工业大学的李泳格开发了一种交流热丝GMAW焊接[10],采用交流电流预热填充焊丝,很好的抑制了热丝电流对主弧的干扰. 在大电流主弧作用下熔池中有足够多高温液态金属,可以保证预热后的填充金属迅速熔化,极大地改善熔敷效率,并获得均匀的焊缝. 该工艺中,填充焊丝与母材之间不会形成电弧,附加热输入很小. 填充焊丝的加入可以有效降低熔池温度,减小热影响区的范围,抑制凝固过程中晶粒的长大,提高焊缝质量.
热丝GMAW焊工艺可以对焊接热输入和熔敷效率独立调节,实现两者解耦,这对控制和改善焊接过程中熔池凝固和结晶过程有重要意义. 此外,在常规电弧焊工艺中,高温电弧可能造成大量合金元素的烧损,不利于焊缝金属的合金化. 而采用热丝焊接工艺可以把合金成分添加到填充焊丝中去,其加热温度略高于金属的熔点,但是远低于电弧中心的温度,所以合金元素可以在熔池中很好的保留,这对改善焊缝的合金成分非常重要. 交流热丝GMAW工艺具有高熔敷速率和低热输入的特点,又增加了冶金工艺的灵活性,应用前景非常广阔.
热丝GMAW工艺虽然具有明显的优势,但有关其熔敷速率影响因素及规律的研究相对较少. 文中进行了工艺试验研究,探索了不同焊接工艺参数对焊丝熔化速度的影响规律,得到了不同预热电流、填充焊丝伸出长度、填充焊丝与主焊丝间距,以及主弧电流电压等条件下填充送丝速度的工艺窗口.
1. 试验方法
试验平台主要由GMAW电源、交流脉冲热丝电源、送丝机及高速摄像机等部件组成. 主弧电源使用常规直流GMAW电源,用来熔化主焊丝、加热母材并形成熔池;交流脉冲热丝电源可以输出优化后的脉冲电流,其频率为200 Hz,电流幅值可以在100~300 A之间调节. 在热丝GMAW焊接工艺中,填充焊丝被直接送入熔池,预热电源输出交流脉冲电流经由热丝、熔池和母材构成的回路,产生电阻热可以预热填充焊丝. 这里主焊枪垂直于母材,填充焊丝在电弧正前方以45°角进入熔池. 填充焊丝被预热到较高温度后进入熔池,在高温液态金属的作用下熔化,可以极大的提高熔敷速率. 中频脉冲电流可以有效防止电磁力引起的主电弧扰动,保持焊接过程稳定. 图1所示为焊接试验平台组成.
在试验过程中,采用同步数据采集和高速摄像技术实现对焊接过程的准确记录. 利用高速摄像技术可以研究焊接过程中电弧的位置、形态和熔池波动状态,也可以观察填充焊丝的熔化状态. 高速摄像仪型号为MV-D1024E,拍摄频率625帧/秒,系统分辨率为512 × 512点阵.
热丝GMAW工艺的基本试验条件为:焊丝型号:JM-56;焊丝直径ϕ 1.2 mm;保护气体成分:80% Ar + 20% CO2;气体流量:15 L/min;主弧焊丝伸出长度:18 mm;焊接速度:0.4 m/min;母材型号:Q235;母材厚度:10 mm.
填充焊丝和主焊丝的相对位置如图2所示. 主要研究如下几个因素对熔敷速率的影响规律:①填充焊丝预热电流;②填充焊丝伸出长度;③填充焊丝与主焊丝间距;④主弧电流和电压.
在其它参数不变的条件下,分别独立调节交流热丝预热电流、填充焊丝伸出长度、填充焊丝与主焊丝间距,以及主弧电流电压,找到与该条件相匹配的最佳填充焊丝速度范围,并研究其影响规律. 通过高速摄像观察填充焊丝,可以找到填充焊丝送入GMAW熔池中,刚好既不起弧也不触到熔池底部的状态. 也可以同时监测送丝电机的电枢电流作为辅助判据,当电枢电流有较明显的增大趋势时,可以认为填充焊丝已经抵到熔池底部.
2. 工艺参数对熔敷速率的影响规律
2.1 热丝电流对熔敷速率的影响规律
在热丝GMAW工艺过程中,交流预热电流产生电阻热对填充焊丝加热,电流的大小直接影响焊丝的温度分布. 文中试验主要研究热丝预热电流对填充焊丝送丝速度范围的影响规律.
进行工艺试验时,填充焊丝的伸出长度为18 mm,主弧焊丝和填充焊丝间距为12 mm,交流热丝电流从100 A调节到300 A.
图3中上部曲线表示在设定的热丝电流条件下,填充焊丝可以使用的最大速度. 当填充速度大于该曲线数值时,填充焊丝端部将触及熔池底部,造成熔池不稳. 而下部曲线表示该预热电流下,填充焊丝可以使用的最小速度. 当速度过小时,由于焊丝熔化较快,可能会使焊丝端头离开熔池表面,产生电弧和飞溅,造成焊接过程失稳. 下文中试验的曲线都代表相同的含义,不再赘述.
由图3可知,随着预热电流的增加,填充焊丝送丝速度相应增加,熔敷速率提高. 填充焊丝的加热能量主要源于两个部分:预热电流电阻热和熔池储热. 这里熔池储热不变,但是预热能量和预热电流的平方成正比,所以该曲线呈指数形式增长. 且预热电流越大,可以使用的送丝速度范围也相应扩大.
当热丝电流最大达到300 A时,辅助焊丝送丝速度可以达到25 m/min,附加熔敷速率约14 kg/h. 此时主弧的送丝速度约16 m/min,综合熔敷速率已经可以达到20 kg/h以上,相对常规的GMAW工艺效率提高一倍.
2.2 焊丝伸出长度对熔敷速率影响规律
在焊丝预热过程中,焊丝伸出长度大小决定了预热电流产生电阻热的时间,进而影响到焊丝温度分布,伸出长度越长则预热效果越明显. 文中试验研究伸出长度对填充焊丝送丝速度的影响规律. 试验设定预热电流为200 A,主弧焊丝和填充焊丝间距为12 mm;焊接速度为0.40 m/min,改变填充焊丝伸出长度,测量相应条件下填充送丝速度的最小值及最大值. 结果如图4所示.
由图4可知,随着填充焊丝伸出长度的增加,其送丝速度也相应增加,而且基本呈线性关系. 最小和最大送丝速度的差值变化不太明显. 这是由于在预热电流不变的条件下,预热能量与焊丝伸出长度呈正比,所以该曲线呈线性状态. 由于焊丝的电阻率随着温度的上升略有增加,所以整体曲线呈略上翘的形态. 由图可知,填充焊丝伸出长度和熔敷速率之间有明显的关系,其送丝速度的调节范围在10~20 m/min之间,附加熔敷速率最大可达10 kg/h左右.
2.3 填充焊丝与主丝间距对熔敷速率的影响规律
填充焊丝进入熔池的位置直接影响了电弧对焊丝的加热效果. 该位置如果靠近电弧中心,则电弧对填充焊丝的加热将会从间接加热渐变为直接加热. 从提高熔敷效率的角度考虑,直接加热的效率最高,但是从保证合金化的角度考虑,直接加热会增加填充焊丝中合金元素的烧损.
文中试验主要研究焊丝间距对熔敷速率的影响规律. 填充焊丝伸出长度为18 mm,预热电流设定为100 A;改变填充焊丝与主弧焊丝之间的距离,并找到填充焊丝的合理送丝速度区间. 结果如图5所示.
由图5可知,当焊丝间距约为6 mm时,最大填充送丝速度可以达到30 m/min,对应熔敷速率提高约15 kg/h. 但此时填充焊丝已经进入主弧的中心区,所以加热功率很大,氧化烧损比较严重,不利于填充金属的合金化过程. 随着焊丝间距的增大,最佳送丝速度范围不断降低,当焊丝间距大于11 mm时,焊丝预热所受电弧热减小,其熔化速度减小,填充焊丝速度也相应减小,熔敷速率随之降低. 速度区间减小,并最终趋于稳定. 此时电弧对焊丝的热影响已经很小,熔敷速率主要受电阻热和熔池热的影响.
2.4 主弧规范对填充焊丝熔化速度影响规律
在热丝GMAW工艺中,主弧能量用于熔化母材形成熔池,熔池的热量又用于熔化经过预热的填充焊丝. 熔池的形状和温度对填充焊丝的熔化有直接的影响. 文中试验研究主弧电流电压参数对填充焊丝送丝速度规范区间的影响规律. 试验时主弧焊丝和填充焊丝间距为12 mm;热丝电流200 A,焊接速度0.4 m/min. 主弧电流电压从210 A/29 V上升到360 A/35 V时. 最佳填充焊丝送丝区间如图6所示.
由图6可知,随着主弧电流的增加,填充焊丝最小送丝速度基本保持不变,最大送丝速度随主弧规范的增加也迅速上升. 当主弧电流超过300 A后,最大送丝速度增速明显.
熔敷速率主要受两方面因素影响. 一是电弧功率,主弧电流增加的同时,其匹配电压也在相应增加,所以电弧功率的变化速度越来越快,熔敷速率的增加也随之变快;二是熔池深度,熔池深度影响到熔池加热填充焊丝的时间,当主弧电流大于300 A时,电弧挖掘作用明显增加,从而熔池深度增加,其对填充焊丝的加热时间也在延长,所以熔敷速率增加明显. 从焊缝效果来看,随着主弧电流电压的增加,焊缝的余高和成形饱满度也相应增加.
3. 热丝GMAW工艺熔敷系数分析
在热丝GMAW焊接工艺中,填充焊丝的存在可以使熔池的温度降低,熔池和热影响区金属的过热程度也相应减小,所以接头性能会有很大改善,这对很多热输入敏感的高强钢有重要的意义. 另外,从熔敷系数的角度分析,为了产生相同数量的熔敷金属,热丝GMAW所需要的能量也比较少. 熔敷系数可以由下面公式计算,即
$$a = \frac{M}{{It}}$$ (1) 式中:a是熔敷系数(g/A·s);M 是熔敷金属量(g);I 是焊接电流(A);t 是焊接时间(s).
在热丝GMAW焊接工艺中,一般电弧稳定飞溅很少,所以可用熔化金属量近似替代熔敷金属量. 热丝预热功率和电弧功率相比,在焊接电流较小时,占比不足20%,在焊接电流较大时,占比只有不足10%,所以计算时以主弧能量为主. 熔化总金属量可以由主弧送丝速度和填充焊丝送丝速度之和经过计算得到. 这里以前面2.4节的试验数据为基础,可以获得焊接电流和熔敷系数的关系如图7所示.
图7中虚线代表常规GMAW工艺熔敷系数和焊接电流的关系,也就是单独主弧的熔敷系数同电流关系. 由曲线可知,随着电流的增大,熔敷系数略有减小. 这是由于焊接电流越大,则熔滴的过热程度越高,所以单位电流熔化焊丝的质量反而有所下降. 图中实线所示为热丝GMAW工艺整体熔敷系数,该曲线前段略有下降,但后段又有提高. 其中熔敷系数下降的原因和常规GMAW相同,后段由于电弧功率增大后,电弧加热的范围也有所增大,填充焊丝也吸收了部分电弧热量的原故,所以熔敷系数有所提高.
综合比较可知,热丝GMAW可以提高熔敷系数约一倍左右,从节能减排的角度比较,热丝GMAW也有明显的优势.
4. 结论
(1) 研究了热丝GMAW焊接工艺中,多种工艺参数对填充焊丝送丝速度工艺窗口的影响规律. 结果表明,该工艺可以达到20 kg/h以上的熔敷速率,相比传统GMAW工艺提高效率一倍以上.
(2) 对比了热丝GMAW工艺和常规GMAW焊接工艺的熔敷系数和电流关系曲线,结果表明热丝GMAW可以提高熔敷系数一倍左右.
-
图 4 氧化铝激光连接接头形貌[42]
Figure 4. Morphology of laser connection joints of alumina. (a) microstructure of the weld position; (b) formed crystals in furnace atmosphere at the interface of filler and ceramic
图 5 温度自控制焊接系统及其焊接试样示意图[44]
Figure 5. Schematic diagram of the temperature-controlled welding system and its welding specimen. (a) CO2 laser welding system with temperature self-control; (b) angle-jointed quartz glass specimen with glass powder as additive
图 7 超快激光与材料相互作用时,发生在激光强度轴与时间轴上的物理现象与响应过程[62]
Figure 7. Physical phenomena and response processes occurring on the laser intensity and time axes during the interaction of ultrafast lasers with materials
图 8 使用超快激光焊接玻璃[66]
Figure 8. Glass welding by ultra-fast laser. (a) two pieces of glass is illuminated by ultrafast laser;(b) air layer is added to the self-focusing effect;(c) hypothesis of welding process
图 9 基于光学薄膜干涉的玻璃表面气隙检测方法[66]
Figure 9. Detection of air gaps on glass surfaces based on optical thin film interferometry
图 11 焦点位置对玻璃界面改性的影响[28]
Figure 11. Influence of focal position on the modification of glass interface. (a) microscopic side view on laser-induced modifications for different focusing depths below the sample surface; (b) SEM image of bulged surface; (c) SEM image of ejected material
图 12 通过飞秒激光时空整形焊接脆硬性透明材料
Figure 12. Welding brittle and hard transparent materials through femtosecond laser spatio-temporal shaping. (a) dependence of time delay on the heat affected zone; (b) images with delay times of 0 ps, 60 ns and 80 ns under optical microscopy, respectively; (c) dependence of time delay on the strength of the joint joints; (d) welding specimens with femtosecond laser Bessel beams at different focusing positions; (e) welding specimens with femtosecond laser gaussian beams at different focusing positions
图 13 脆硬性透明材料激光连接的应用
Figure 13. Application of laser joining for brittle and rigid transparent materials. (a) there are interference fringes in the non-welding area of the ultrafast laser sealed four-sided fused silica sample, while there are no interference fringes in the sealing domain; (b) transmission diagram of four intersecting welds under LED backlight; (c) a photograph of a ceramic chamber sealed by a glass substrate; (d) a schematic diagram of the process of forming a sealed microfluidic device by femtosecond laser welding and a top view of the sealed microfluidic device; (e) wafer state of sensor manufactured by MEMS process; (f) schematic diagram of laser connection; (g) schematic diagram of welding area around sensor and sensor; (h) schematic diagram of laser welding and cutting path; (i) glass caps are assembled by USP laser welding; (j) silicon fibers of the cores
表 1 石英玻璃接头拉剪强度[67]
Table 1 Tensile shear strength of quartz glass joints
编号 平均功率
P/mW焊缝间距
d/μm拉剪强度
Rτ/MPa断裂位置 1 20 50 6.64 母材 2 20 10 14 母材 3 20 10 10 母材 4 40 30 8.96 母材 5 50 30 16.79 母材 6 20 30 40.44 界面 7 20 20 23.52 界面 表 2 钢化真空玻璃产品性能检测项目及结果[112]
Table 2 Performance testing ltems and results for tempered vacuum glass products
序号 试验项目 受试件规格 测试结果 1 保温性能K值 1000 mm ×1000 mm0.48 W/(m2·K) 2 碎片状态 610 mm × 610 mm 170片 3 表面应力 610 mm × 610 mm 115 MPa -
[1] VUJIC S, PERIC D, LIVADA B, et al. Optical protective window design and material selection issues in the multi-sensor electro-optical surveillance systems[J]. Sensors, 2023, 23(5): 2784.
[2] YU F Y, MA B W, XIE Z Q, et al. Developing "Smart Windows" for optical storage and temperature sensing based on KNN transparent ceramics[J]. Journal of the European Ceramic Society, 2023, 43(10): 4408 − 4418.
[3] XIAO Z H, YU S J, LI Y M, et al. Materials development and potential applications of transparent ceramics: A review[J]. Materials Science and Engineering: R: Reports, 2020, 139: 100518.
[4] MING W Y, JIANG Z W, LUO G F, et al. Progress in transparent nano-ceramics and their potential applications[J]. Nanomaterials (Basel), 2022, 12(9): 1491.
[5] AKINRIBIDE O J, MEKGWE G N, AKINWAMIDE S O, et al. A review on optical properties and application of transparent ceramics[J]. Journal of Materials Research and Technology, 2022, 21: 712 − 738. doi: 10.1016/j.jmrt.2022.09.027
[6] NAUMANN H, SCHRöDER G. Optical construction elements [M]. Munich: Hanser Verlag, 1992.
[7] OSIPOV V V, LUKYASHIN K E, SHITOV V A, et al. Two-step thermal diffusional bonding of transparent Nd: YAG ceramics[J]. Materials Letters, 2016, 167: 81 − 84. doi: 10.1016/j.matlet.2015.12.165
[8] YI R X, CHAO C, LI Y X, et al. Brazing of SiO2 ceramic[J]. The International Journal of Advanced Manufacturing Technology, 2021, 113(7): 1799 − 1816.
[9] ARI J, LOUVET G, LEDEMI Y, et al. Anodic bonding of mid-infrared transparent germanate glasses for high pressure - high temperature microfluidic applications[J]. Science and Technology of Advanced Materials, 2020, 21(1): 11 − 24. doi: 10.1080/14686996.2019.1702861
[10] LIU H G, LIN W X, HONG M H. Hybrid laser precision engineering of transparent hard materials: challenges, solutions and applications[J]. Light Science & Applications, 2021, 10(1): 162. doi: 10.1038/s41377-021-00596-5
[11] LUO Z J, REN X Y, ZHOU L, et al. A high-performance nonlinear metasurface for spatial-wave absorption[J]. Advanced Functional Materials, 2022, 32(16): 2109544.
[12] Manfield H G. Thin film circuits—Part I. The uses of photomechanical processes in the manufacture of micro-miniature circuits[J]. Microelectronics Reliability, 1964, 3(1): 5 − 12. doi: 10.1016/0026-2714(64)90161-1
[13] 施欲亮. 基于耐撞性仿真的轿车车身零件拼焊板设计方法研究 [D]. 上海: 上海交通大学, 2008. SHI yuliang. Study on the desigin method of automotive parts with tailor-welded blanks based on crashworthiness simulation [D]. Shanghai: Shanghai Jiao Tong University, 2008.
[14] BENSON D K, TRACY C E. Laser sealed vacuum insulation window: United States Patent 4, 683, 154 [P]. 1987-7-28.
[15] SLEIMAN K, LEGUTKO M, RETTSCHLAG K, et al. CO2 laser based welding of borosilicate glass by laser glass deposition[J]. Procedia CIRP, 2022, 111: 466 − 469. doi: 10.1016/j.procir.2022.08.068
[16] LUO C, LIN L W. The application of nanosecond-pulsed laser welding technology in MEMS packaging with a shadow mask[J]. Sensors and Actuators A: Physical, 2002, 97-98: 398 − 404. doi: 10.1016/S0924-4247(01)00849-4
[17] DE PABLOS-MARTíN A, EBERT M, PATZIG C, et al. Laser welding of sapphire wafers using a thin-film fresnoite glass solder[J]. Microsystem Technologies, 2014, 21(5): 1035 − 1045.
[18] 秦浩. 中厚板部件焊接机器人系统的设计与实现 [D]. 济南: 山东大学, 2022. QIN Hao. Design and implementation of welding robot system for thick plate parts [D]. Jinan: Shandong University, 2002.
[19] RACIUKAITIS G. Ultra-short pulse lasers for microfabrication: A Review[J]. Ieee Journal of Selected Topics in Quantum Electronics, 2021, 27(6): 1100112.
[20] TAMAKI T, WATANABE W, NISHII J, et al. Welding of transparent materials using femtosecond laser pulses[J]. Japanese Journal of Applied Physics Part 2-Letters & Express Letters, 2005, 44(20-23): L687 − L689.
[21] WATANABE W, ONDA S, TAMAKI T, et al. Direct joining of glass substrates by 1 kHz femtosecond laser pulses[J]. Applied Physics B, 2006, 87(1): 85 − 89.
[22] MIYAMOTO I, HORN A, GOTTMANN J. Local melting of glass material and its application to direct fusion welding by ps-laser pulses[J]. Journal of Laser Micro/Nanoengineering, 2007, 2(1): 7 − 14.
[23] RICHTER S, ZIMMERMANN F, DöRING S, et al. Ultrashort high repetition rate exposure of dielectric materials: laser bonding of glasses analyzed by micro-Raman spectroscopy[J]. Applied Physics A, 2012, 110(1): 9 − 15.
[24] ZIMMERMANN F, RICHTER S, DORING S, et al. Ultrastable bonding of glass with femtosecond laser bursts[J]. Applied Optics, 2013, 52(6): 1149 − 1154. doi: 10.1364/AO.52.001149
[25] PENILLA E H, DEVIA-CRUZ L F, WIEG A T, et al. Ultrafast laser welding of ceramics[J]. Science, 2019, 365(6455): 803 − 808. doi: 10.1126/science.aaw6699
[26] PAN R, YANG D, ZHOU T S, et al. Micro-welding of sapphire and metal by femtosecond laser[J]. Ceramics International, 2023, 49(13): 21384 − 21392.
[27] WATANABE W, ONDA S, TAMAKI T, et al. Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses[J]. Applied Physics Letters, 2006, 89(2): 021106 − 021106-3.
[28] RICHTER S, ZIMMERMANN F, EBERHARDT R, et al. Toward laser welding of glasses without optical contacting[J]. Appl Phys a-Mater, 2015, 121(1): 1 − 9. doi: 10.1007/s00339-015-9377-8
[29] YOSHITAKE S, ITO Y, MIYAMOTO N, et al. Ultrafast and large-gap microwelding of glass substrates by selective absorption of continuous-wave laser into transiently excited electrons[J]. CIRP Annals, 2022, 71(1): 157 − 160. doi: 10.1016/j.cirp.2022.03.003
[30] HUANG M H, ZHANG Q M, LYU Q T, et al. UV-laser welding process of copper-plated glass[J]. Chinese Journal of Lasers, 2020, 47(10): 1002007.
[31] ZHANG G D, CHENG G H, ZHANG W. Progress in ultrafast laser space-selective welding[J]. Chinese Optics, 2020, 13(6): 1209 − 1223. doi: 10.37188/CO.2020-0131
[32] FAN W Z , ZHAO Q Z. Recent progress in ultrashort pulsed laser microwelding of glasses[J]. Laser & Optoelectronics Progress, 2015, 52(8): 08001.
[33] WANG L F, DING Y, WANG G W, et al. Research advances of laser-induced micro-nano joining technology[J]. Journal of Mechanical Engineering, 2022, 58(2): 88 − 89.
[34] WEI Chaoran, ITO Yusuke, SHINOMOTO Rin, et al. Simulation of ultrashort pulse laser drilling of glass considering heat accumulation[J]. Optics Express, 2020, 28(10): 15240 − 15249. doi: 10.1364/OE.390289
[35] TAN C, ZHAO L J, CHEN M J, et al. Heat accumulation effect during CO2 laser processing of fused silica optics[J]. Results in Physics, 2022, 34: 105308.
[36] TEMMLER A, BRAUN K, ULUZ E. Heat accumulation and surface roughness evolution in CO2 nanosecond laser ablation of quartz glass[J]. Optics & Laser Technology, 2021, 144: 107426.
[37] CHA D, AXINTE D. Transient thermal model of nanosecond pulsed laser ablation: Effect of heat accumulation during processing of semi-transparent ceramics[J]. International Journal of Heat and Mass Transfer, 2021, 173: 121227.
[38] ZHANG X, GUO L, et al. Investigation of the reaction mechanism and optical transparency in nanosecond laser welding of glasses assisted with titanium film[J]. Applied Optics, 2020, 59(4): 940 − 947. doi: 10.1364/AO.378409
[39] KUMAR P, GHOSH S K, SARAVANAN S, et al. Significance of the interlayer in explosive welding of similar and dissimilar materials: Review[J]. Combustion, Explosion, and Shock Waves, 2023, 59(3): 253 − 278. doi: 10.1134/S0010508223030012
[40] PASANG T, AZIZIDEROUEI M, TAO Y, et al. Improvements in welding properties of titanium through the use of interlayers[J]. Journal of the Minerals, 2019, 71(2): 697 − 702. doi: 10.1007/s11837-018-3164-x
[41] FANG Y J, JIANG X S, MO D F, et al. A review on dissimilar metals’ welding methods and mechanisms with interlayer[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102(9): 2845 − 2863.
[42] BÖRNER F D, LIPPMANN W, HURTADO A. Laser-joined Al2O3 and ZrO2 ceramics for high-temperature applications[J]. Journal of Nuclear Materials, 2010, 405(1): 1 − 8. doi: 10.1016/j.jnucmat.2010.07.020
[43] BöRNER F D, LIPPMANN W, HURTADO A, et al. Glasses for laser joining of zirconia ceramics[J]. Journal of the European Ceramic Society, 2014, 34(3): 765 − 772. doi: 10.1016/j.jeurceramsoc.2013.09.019
[44] POHL L, WITZENDORFF P V, SUTTMANN O, et al. Automated laser-based glass fusing with powder additive, proceedings of the ICALEO 2014: 33nd International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing[C]//ICALEO Congress,2014.
[45] TAN D, SHARAFUDEEN K N, YUE Y, et al. Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications[J]. Progress in Materials Science, 2016, 76: 154 − 228. doi: 10.1016/j.pmatsci.2015.09.002
[46] GODFREY A T K, KALLEPALLI D L N, RATTé J, et al. Femtosecond-laser-induced nanoscale blisters in polyimide thin films through nonlinear absorption[J]. Physical Review Applied, 2020, 14(4): 044507.
[47] HE S Q, HE T H. Investigation on the transient response of a porous half-space with strain and thermal relaxations due to laser pulse heating[J]. Waves in Random and Complex Media, 2021, 34(3): 1 − 25.
[48] BRUCE S A. Investigation on the transient response of a porous half-space with strain and thermal relaxations due to laser pulse heating[J]. Waves in Random and Complex Media, 2022, 97(3): 035303.
[49] SINGH I, GUPTA P K, UMA R, et al. Spatiotemporal nonlinear evolution of the laser pulse and turbulence generation in laser produced plasmas[J]. Physics of Plasmas, 2022, 29(4): 042114.
[50] KABASHIN A V, SINGH A, SWIHART M T, et al. Laser-processed nanosilicon: a multifunctional nanomaterial for energy and healthcare[J]. ACS Nano, 2019, 13(9): 9841 − 9867. doi: 10.1021/acsnano.9b04610
[51] BUIVIDAS R, MIKUTIS M, JUODKAZIS S. Surface and bulk structuring of materials by ripples with long and short laser pulses: Recent advances[J]. Progress in Quantum Electronics, 2014, 38(3): 119 − 156. doi: 10.1016/j.pquantelec.2014.03.002
[52] LU Y, LI Y F, XIE X F, et al. Research advances of femtosecond laser-induced nanogratings for transparent materials[J]. Frontiers in Chemistry, 2022, 10: 1082651. doi: 10.3389/fchem.2022.1082651
[53] SANTOS S N C, PAULA K T, COUTO F A, et al. Femtosecond laser micromachining optical waveguides on transparent silica xerogels[J]. Optical Materials, 2022, 132: 112819.
[54] LU Y M, DUAN Y Z, LIU X Q, et al. High-quality rapid laser drilling of transparent hard materials[J]. Optics Letters, 2022, 47(4): 921 − 924. doi: 10.1364/OL.452530
[55] CHOI J, SCHWARZ C. Advances in femtosecond laser processing of optical material for device applications[J]. International Journal of Applied Glass Science, 2020, 11(3): 480 − 490. doi: 10.1111/ijag.14979
[56] REN G Q, ITO Yusuke, SUN H J, et al. Temporal-spatial characteristics of filament induced by a femtosecond laser pulse in transparent dielectrics[J]. Optics Express, 2022, 30(4): 4954 − 4964. doi: 10.1364/OE.449874
[57] DE MICHELE V, MARIN E, BOUKENTER A, et al. Multiphoton process investigation in silica by UV femtosecond laser[J]. Journal of Non-Crystalline Solids, 2022, 580: 121384.
[58] SAHOO A, RAJEEV P P, KRISHNAN S. All-optical investigations of intense femtosecond pulse ionization in transparent dielectrics with applications[J]. Journal of Optics, 2022, 24(6): 064004.
[59] ALIMOHAMMADIAN E, ERTORER E, MEJIA UZEDA E, et al. Inhibition and enhancement of linear and nonlinear optical effects by conical phase front shaping for femtosecond laser material processing[J]. Scientific Reports, 2020, 10(1): 21528. doi: 10.1038/s41598-020-78373-4
[60] SOPENA P, GARCIA LECHUGA M, WANG A, et al. Ultrafast laser stabilization by nonlinear absorption for enhanced-precision material processing[J]. Optics Letters, 2022, 47(4): 993 − 996. doi: 10.1364/OL.449720
[61] WANG X, ZHANG G D, ZHANG Y J, et al. Photochemical response triggered by ultrashort laser gaussian-bessel beams in photo-thermo-refractive glass[J]. Optics Express, 2020, 28(21): 31093 − 31102. doi: 10.1364/OE.401905
[62] RETHFELD B, SOKOLOWSKI TINTEN K, VON DER LINDE D, et al. Timescales in the response of materials to femtosecond laser excitation[J]. Applied Physics A-materials Science & Processing, 2004, 79(4-6): 767 − 769. doi: 10.1007/s00339-004-2805-9
[63] CVECEK K, DEHMEL S, MIYAMOTO I, et al. A review on glass welding by ultra-short laser pulses[J]. International Journal of Extreme Manufacturing, 2019, 1(4): 042001. doi: 10.1088/2631-7990/ab55f6
[64] TAMAKI T, WATANABE W, ITOH K J O E. Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm[J]. Optics Express, 2006, 14(22): 10460 − 10468.
[65] CVECEK K, MIYAMOTO I, STRAUSS J, et al. Sample preparation method for glass welding by ultrashort laser pulses yields higher seam strength[J]. Applied Optics, 2011, 50(13): 1941 − 1944. doi: 10.1364/AO.50.001941
[66] ZHANG J J, CHEN S H, LU H L, et al. The effect of gap on the quality of glass-to-glass welding using a picosecond laser[J]. Optics and Lasers in Engineering, 2020, 134: 106248. doi: 10.1016/j.optlaseng.2020.106248
[67] 潘泽浩, 程战, 刘磊, 等. 石英玻璃飞秒激光微连接及其接头性能[J]. 焊接学报, 2016, 37(6): 5 − 8. PAN Zehao, CHENG Zhan, LIU Lei, et al. Microwelding of fused silica by femtosecond laser and the joint mechanical properties[J]. Transactions of the China Welding Institution, 2016, 37(6): 5 − 8.
[68] CHEN H, DENG L M, DUAN J, et al. Picosecond laser welding of glasses with a large gap by a rapid oscillating scan[J]. Optics Letter, 2019, 44(10): 2570 − 2573. doi: 10.1364/OL.44.002570
[69] LI Z, YI Z, JIA X, et al. Micro-welding of non-optical contact sapphire/metal using burst femtosecond laser[J]. Materials Letters, 2024, 377: 137540. doi: 10.1016/j.matlet.2024.137540
[70] ALEXEEV I, CVECEK K, SCHMIDT C, et al. Characterization of shear strength and bonding energy of laser produced welding seams in sglass[J]. Journal of Laser Micro/Nanoengineering , 2012, 7(3): 279 − 283. doi: 10.2961/jlmn.2012.03.0009
[71] MIYAMOTO I, CVECEK K, SCHMIDT M. Crack-free conditions in welding of glass by ultrashort laser pulse[J]. Optics Express, 2013, 21(12): 14291 − 14302. doi: 10.1364/OE.21.014291
[72] MIYAMOTO I, CVECEK K, SCHMIDT M. Evaluation of nonlinear absorptivity in internal modification of bulk glass by ultrashort laser pulses[J]. Optics Express, 2011, 19(11): 10714 − 10727. doi: 10.1364/OE.19.010714
[73] HAO W, GUO L, ZHANG X, et al. Influence of processing parameters on the quality of titanium-coated glass welded by nanosecond pulse laser[J]. Optics & Laser Technology, 2021, 144: 107411.
[74] KISSI E O, BELLOUARD Y. Self-organized nanostructures forming under high-repetition rate femtosecond laser bulk-heating of fused silica[J]. Optics Express, 2018, 26(11): 14024 − 14037. doi: 10.1364/OE.26.014024
[75] ZHANG G D, CHENG G H, BHUYAN M K, et al. Ultrashort bessel beam photoinscription of bragg grating waveguides and their application as temperature sensors[J]. Photonics Research, 2019, 7(7): 806 − 814.
[76] STOIAN R, BHUYAN M K, ZHANG G, et al. Ultrafast bessel beams: advanced tools for laser materials processing[J]. Advanced Optical Technologies, 2018, 7(3): 165 − 174. doi: 10.1515/aot-2018-0009
[77] WANG R, ZHANG Q B, LI D, et al. Identification of tunneling and multiphoton ionization in intermediate Keldysh parameter regime[J]. Optics Express, 2019, 27(5): 6471 − 6482. doi: 10.1364/OE.27.006471
[78] OUYANG Z, OKAMOTO Y, OGINO Y, et al. Influence of numerical aperture on molten area formation in fusion micro-welding of glass by picosecond pulsed laser[J]. Applied Sciences, 2019, 9(7): 1412.
[79] RICHTER S, ZIMMERMANN F, TÜNNERMANN A, et al. Laser welding of glasses at high repetition rates – Fundamentals and prospects[J]. Optics & Laser Technology, 2016, 83: 59 − 66.
[80] TAN H, DUAN J. Welding of glasses in optical and partial-optical contact via focal position adjustment of femtosecond-laser pulses at moderately high repetition rate[J]. Applied Physics A-materials Science & Processing, 2017, 123(7): 481.
[81] FENG Y H, PAN R, ZHOU T S, et al. Direct joining of quartz glass and copper by nanosecond laser[J]. Ceramics International, 2023, 49(22): 36056 − 36070. doi: 10.1016/j.ceramint.2023.08.285
[82] WANG H, LI P, WANG X, et al. Joint formation mechanism of different laser transmission welding paths[J]. Journal of Polymer Engineering, 2022, 42(7): 663 − 676. doi: 10.1515/polyeng-2021-0260
[83] YAN Z X, MEI X S, WANG W J, et al. Numerical simulation on nanosecond laser ablation of titanium considering plasma shield and evaporation-affected surface thermocapillary convection[J]. Optics Communications, 2019, 453: 124384. doi: 10.1016/j.optcom.2019.124384
[84] CHU D K, YAO P, SUN X Y, et al. Ablation enhancement of fused silica glass by femtosecond laser double-pulse bessel beam[J]. Journal of the Optical Society of America B, 2020, 37(11): 3535 − 3541. doi: 10.1364/JOSAB.402425
[85] BOHLMANN KUNZ M, PODOROVA Y, ARMSTRONG Z T, et al. Time-domain photothermal AFM spectroscopy via femtosecond pulse shaping[J]. Analytical Chemistry, 2022, 94(36): 12374 − 12382. doi: 10.1021/acs.analchem.2c01920
[86] Li B H, Li X W, Zhao R Z, et al. Polarization multiplexing terahertz metasurfaces through spatial femtosecond laser-shaping fabrication[J]. Advanced Optical Materials, 2020, 8(12): 2000136.
[87] LI J, TAN W J, SI J H, et al. Control of the spatial characteristics of femtosecond laser filamentation in glass via feedback-based wavefront shaping with an annular phase mask[J]. Optics Express, 2021, 29(4): 5972 − 5981. doi: 10.1364/OE.418334
[88] HUANG J Y, ZHU T F, RUAN Z C. Two-shot calibration method for phase-only spatial light modulators with generalized spatial differentiator[J]. Physical Review Applied, 2020, 14(5): 054040.
[89] SHIRAI T, FRIBERG A T. Fast and reliable technique for spatial coherence measurement with a temporally modulated nonredundant slit array[J]. Journal of the Optical Society of America A, 2022, 39(12): C105 − C115. doi: 10.1364/JOSAA.472836
[90] JALVISTE E, PALM V, PEET V. Conically refracted gaussian beam transformed by a lens[J]. Journal of Modern Optics, 2020, 67(3): 252 − 260. doi: 10.1080/09500340.2020.1714765
[91] WU S Z, WU D, XU J, et al. Characterization and mechanism of glass microwelding by double-pulse ultrafast laser irradiation[J]. Optics Express, 2012, 20(27): 28893 − 28905. doi: 10.1364/OE.20.028893
[92] HECKER S, BLOTHE M, GROSSMANN D, et al. Process regimes during welding of glass by femtosecond laser pulse bursts[J]. Applied Optics, 2020, 59(22): 6452 − 6458. doi: 10.1364/AO.392702
[93] DENG J N, QI H X, LIU X Y, et al. Ultrafast dynamics control on ablation of Cu using shaped femtosecond pulse trains[J]. Current Applied Physics, 2021, 26: 49 − 54. doi: 10.1016/j.cap.2021.03.017
[94] LIU W F, SUN M Y, CUI Z J, et al. Modulation of laser damage by temporal shaping of double picosecond pulses[J]. Optics Letters, 2022, 47(15): 3856 − 3859. doi: 10.1364/OL.466022
[95] ZHANG G D, STOIAN R, ZHAO W, et al. Femtosecond laser bessel beam welding of transparent to non-transparent materials with large focal-position tolerant zone[J]. Optics Express, 2018, 26(2): 917 − 926. doi: 10.1364/OE.26.000917
[96] SOKOLOWSKI TINTEN K, BIALKOWSKI J, VON DER LINDE D. Ultrafast laser-induced order-disorder transitions in semiconductors[J]. Physical Review B, 1995, 51(20): 14186 − 14198. doi: 10.1103/PhysRevB.51.14186
[97] REHMAN Z U, ULLAH S, QAYYUM H, et al. Phase transformations initiated by optical breakdown in bulk of fused silica[J]. Optics & Laser Technology, 2021, 134: 106630.
[98] JIANG L, TSAI H L. Energy transport and material removal in wide bandgap materials by a femtosecond laser pulse[J]. International Journal of Heat and Mass Transfer, 2005, 48(3-4): 487 − 499. doi: 10.1016/j.ijheatmasstransfer.2004.09.016
[99] TAN H, ZHANG Y X, LIU Y X, et al. Ansys workbench simulation of glass welding by femtosecond laser pulses[J]. Infrared Physics & Technology, 2019, 98: 334 − 340.
[100] TIEN A C, BACKUS S, KAPTEYN H, et al. Short-pulse laser damage in transparent materials as a function of pulse duration[J]. Physical Review Letters, 1999, 82(19): 3883 − 3886. doi: 10.1103/PhysRevLett.82.3883
[101] STUART B C, FEIT M D, RUBENCHIK A M, et al. Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses[J]. Physical Review Letters, 1995, 74(12): 2248 − 2251. doi: 10.1103/PhysRevLett.74.2248
[102] DU D, LIU X, KORN G, et al. Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs[J]. Applied Physics Letters, 1994, 64(23): 3071 − 3073. doi: 10.1063/1.111350
[103] RETHFELD B, KAISER A, VICANEK M, et al. Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation[J]. Physical Review B, 2002, 65(21): 214303.
[104] WOOTEN F. Chapter 4-FREE-ELECTRON METALS [M]//WOOTEN F. Optical Properties of Solids. Academic Press. 1972: 85 − 107.
[105] Interaction of Radiation with Matter [M]//WOOTEN F. Optical Properties of Solids. Academic Press. 1972: 236 − 239.
[106] HAZAK G, ZINAMON Z, ROSENFELD Y, et al. Temperature relaxation in two-temperature states of dense electron-ion systems[J]. Physical Review E, 2001, 64(6): 066411. doi: 10.1103/PhysRevE.64.066411
[107] 昝晨. 超短脉冲激光辐照薄膜结构的热-力耦合分析 [D]. 镇江: 江苏大学, 2020. ZAN Chen. Thermo-mechanical coupling analysis of ultrashort-pulselaser irradiated thin film structures [D]. Zhenjiang: Jiangsu University, 2020.
[108] KAUR P, SINGH S. Convective radiative moving fin with temperature-dependent thermal conductivity, internal heat generation and heat transfer coefficient[J]. Pramana, 2022, 96(4): 216.
[109] PAIXãO L S, USUDA E O, IMAMURA W, et al. High-field specific heat and entropy obtained from adiabatic temperature change[J]. The European Physical Journal Plus, 2021, 136(5): 554.
[110] 李瑜煜, 汤祖尧. 激光加工温度场模拟用参数数据库实现方法[J]. 应用激光, 2000(2): 81 − 84. doi: 10.3969/j.issn.1000-372X.2000.02.011 LI Yuyu, TANG Zuyao. Designing method of physical parameter database for computer simulation of temperature fields in laser working[J]. Applied Laser, 2000(2): 81 − 84. doi: 10.3969/j.issn.1000-372X.2000.02.011
[111] KASUYA T, YURIOKA N J W J. Prediction of welding thermal history by a comprehensive solution[J]. Welding Journal, 1993, 72: 107 − 115.
[112] 化山, 徐志武, 王辉, 等. 短波红外线加热封接技术在钢化真空玻璃中的应用 [J]. 玻璃, 2017, 44(9): 40−45. HUA Shan, XU Zhiwu, WANG Hui, et al. The short wave infrared heating technology in tempered vacuum glass[J]. Glass, 2017, 44(9): 40−45.
[113] HUANG H, YANG L M, LIU J. Ultrashort pulsed fiber laser welding and sealing of transparent materials[J]. Applied Optics, 2012, 51(15): 2979 − 2986. doi: 10.1364/AO.51.002979
[114] ITOH K, OZEKI Y. Novel processes in laser microfabrication and microjoining[C]//29th International Congress on Applications of Lasers and Electro-Optics, 2010: 1064-1068.
[115] ROTH G L, ESENC C, HELLMAN R. A new approach to seal polymer microfluidic devices using ultrashort laser pulses[J]. Journal of Laser Micro/Nanoengineering, 2019, 14(1): 49 − 53.
[116] KIM S, PARK J, SO S, et al. Characteristics of an implantable blood pressure sensor packaged by ultrafast laser microwelding[J]. Sensors, 2019, 19(8): 1801.
[117] KAISER E. Laser welding of glass replaces glueing procedure [J]. Laser Technik Journa, 2016, 13: 22−25.
[118] MIYAMOTO I, CVECEK K, SCHMIDT M. Advances of laser welding technology of glass -science and technology[J]. Journal of Laser Micro/Nanoengineering, 2020, 15(2): 63 − 76.
-
期刊类型引用(3)
1. 李敬勇,李超然,徐育烺,钱鹏. 层间温度对CMT电弧增材制造2Cr13不锈钢薄壁件成形及组织和性能影响. 焊接. 2024(02): 43-50 . 百度学术
2. 葛佳棋,万升云,王克鸿,汤旭祥,钟奎,任彭龙,沈芸. 高效熔化极气保焊工艺研究. 轨道交通材料. 2023(01): 36-39 . 百度学术
3. 王彦坤,刘万存,肖鹏,高永光. 斜45°全位置自动TIG焊接设备研制及应用. 压力容器. 2021(10): 76-80 . 百度学术
其他类型引用(3)