Research progress in dissimilar material brazing technology and applications
-
摘要:
轻量化、高性能与多功能化是当前制造业的新兴趋势,在该趋势的推动下,材料连接技术逐渐向多材料、混合结构的方向发展,从而显著提升了对异质材料连接的需求. 异质材料连接技术能够充分发挥不同材料的性能优势,满足现代工业对结构轻量化、功能集成化和性能最优化的要求. 然而,异质材料在连接过程中,由于物理、化学和热力学性质的显著差异,容易出现物相不相容、受热不均匀、界面化合物不稳定、残余应力较大等难题. 针对上述问题,文中总结了近年来异质材料钎焊领域的相关研究和应用现状. 首先,从被连接母材的角度出发,介绍了陶瓷与陶瓷基复合材料、高温合金和金刚石3种典型异质材料钎焊问题的研究热点;其次,从连接方法的角度,介绍了熔钎焊等新兴钎焊工艺和技术的发展现状;最后,总结了异质材料钎焊技术的应用以及所面临的关键问题,并对其未来的发展趋势和技术难点进行了展望.
Abstract:Lightweight, high-performance, and multifunctional designs are emerging trends in modern manufacturing. Driven by these trends, material joining technologies are gradually evolving toward multi-material and hybrid structures, thereby increasing the demand for joining dissimilar materials. Dissimilar material joining technologies can fully leverage the performance advantages of different materials, meeting the requirements of modern industry for structural lightweighting, functional integration and performance optimization. However, during the joining of dissimilar materials, challenges such as material incompatibility, uneven heating, unstable interfacial compounds, and significant residual stresses often arise. In response to these problems, recent research and application progress in the field of brazing for dissimilar materials were summarized. Firstly, from the perspective of joined base materials, the research hotspots in brazing three typical types of dissimilar materials were introduced, including ceramics and ceramic matrix composites, high temperature alloy, and diamond. Subsequently, from the perspective of joining methods, the development status of emerging brazing processes and technologies was reviewed, such as welding-brazing. Finally, the applications of brazing technologies in dissimilar materials were summarized, and the key challenges faced were highlighted, providing an outlook on future development trends and technical difficulties.
-
Keywords:
- dissimilar material /
- brazing /
- ceramics /
- superalloys /
- diamond
-
-
图 1 润湿过程开始(780 ℃)和结束(880 ℃)时不同钎料成分在陶瓷表面润湿铺展行为(原子分数,%)[11]
Figure 1. Wetting and spreading behavior of different brazing material compositions on ceramic surfaces at the beginning (780 ℃) and end (880 ℃) of the wetting process. (a) 0%Ti(780 ℃); (b) 0%Ti(880 ℃); (c) 3.40%Ti(780 ℃); (d) 3.40%Ti(880 ℃); (e) 7.28%Ti(780 ℃); (f) 7.28%Ti(880 ℃); (g) 10.73%Ti(780 ℃); (h) 10.73%Ti(880 ℃); (i) 14.8%Ti(780 ℃); (j) 14. 8%Ti(880 ℃); (k) wetting angle size changing with Ti element content in brazing material
图 2 SiC陶瓷/Zr合金接头微观组织[19]
Figure 2. Microstructure of SiC ceramic/Zr alloy joint. (a) brazing temperature
1040 ℃, holding time for 20 min; (b) enlarged area in Fig. 2(a)图 3 Ni/Cu/AgCuNiMn原位合成高镍AgCuNiMn钎料装配示意图[35]
Figure 3. Assembly diagram of Ni/Cu/AgCuNiMn in-situ synthesized high nickel AgCuNiMn brazing material
图 4 不同厚度Ni中间层BNi-2钎料的接头残余应力与抗剪强度[41]
Figure 4. Residual stress and shear strength of joints of BNi-2 brazing material with different thicknesses of Ni interlayer. (a) distribution of residual stresses in brazed joints; (b) influence of Ni interlayer thickness on the shear strength of joints at room temperature and
1000 ℃图 5 接头在970 ℃下钎焊不同时间的界面微观结构[43]
Figure 5. Interfacial microstructure of joints brazed for different times for different times at 970 ℃. (a)GH99/Ti/TiAl 3min; (b)GH99/Ti/TiAl 10min; (c)GH99/Ti/TiAl 20min; (d)Ni/Ti/TiAl 20min
图 6 Ni-Cr复合钎料钎焊金刚石形貌[51]
Figure 6. Morphology of brazed diamond with Ni-Cr composite brazing filler metal. (a) 0%Zr; (b) 0.5%Zr; (c)1%Zr; (d) 1.5%Zr
图 7 钎涂层磨损过程[61]
Figure 7. Wear process of brazing coating
图 8 添加不同稀土元素Cu-Sn-Ti钎料的微观组织(质量分数,%)[70]
Figure 8. Microstructure of Cu-Sn-Ti brazing filler metal with different rare earth elements added. (a) no addition of rare earth elements; (b) addition of 10% Cu-La alloy; (c) addition of 10% Cu-Ce alloy; (d) addition of 10% Cu-Nd alloy; (e) microhardness and shear strength of four Cu-Sn-Ti brazing filler metal
图 9 焊缝中间区IMCs形貌[77]
Figure 9. IMCs morphology in the middle zone of the welds. (a) conventional laser brazed joint; (b) rotary laser brazed joint
图 10 在无磁场和交变间歇磁场作用下的铜侧界面SEM[82]
Figure 10. SEM of the copper side interface under no magnetic field and alternating intermittent magnetic field. (a) no magnetic field; (b) alternating intermittent magnetic field
图 11 LFB-TiC接头典型界面[83]
Figure 11. LFB-TiC joint typical interface. (a) interface microstructure; (b) enlarged of area (b) marked interface; (c) enlarged of area (c) marked in interface; (d) interface Al element; (e) interface Ti element; (f) interface C element
图 12 Cu/Al管材的MPASSB连接机理[98]
Figure 12. MPASSB joining mechanism of Cu/Al pipe. (a) state of pipe and solder before brazing; (b) oxide film damage and element diffusion; (c) shear rheology and element diffusion; (d) final state
图 13 激光软钎焊在光学组件封装领域应用[102]
Figure 13. Applications of laser soft brazing in the field of optical component packaging
图 14 焊接式PCD刀具[113]
Figure 14. Welding type PCD tool
图 15 镀钛CBN磨粒的焊后形貌[114]
Figure 15. Postweld morphology of titanium plated CBN abrasive particles
表 1 图2(b)中相应点位的EDS结果(原子分数,%)[19]
Table 1 Corresponding points EDS results in Fig. 2(b)
点 Cr Fe Co Ni Cu Zr Sn 可能相 A 51.03 10.24 1.93 0.90 0.50 35.39 0.01 Zr(Fe, Cr)2 B 0.71 0.41 0.48 0.58 3.15 91.55 3.12 Zr(s, s) C 0.17 0.98 1.79 3.67 26.25 67.12 0.01 Zr2Cu D 5.40 9.61 6.65 6.35 6.35 65.44 0.20 HEAP E 0.83 3.32 3.50 2.35 1.59 69.96 18.46 (Zr, Sn) -
[1] 王佳杰, 宋晓国, 武鹏博, 等. 铝/钛异种金属激光/激光-CMT复合熔钎焊工艺及其组织与力学性能[J]. 焊接学报, 2023, 44(2): 54 − 60. doi: 10.12073/j.hjxb.20220617003 WANG Jiajie, SONG Xiaoguo, WU Pengbo, et al. Process, microstructures and mechanical properties of Al/Ti dissimilar metals with laser/laser-CMT hybrid welding-brazing[J]. Transactions of the China Welding Institution, 2023, 44(2): 54 − 60. doi: 10.12073/j.hjxb.20220617003
[2] 李永兵, 马运五, 楼铭, 等. 轻量化多材料汽车车身连接技术进展[J]. 机械工程学报, 2016, 52(24): 1 − 23. doi: 10.3901/JME.2016.24.001 LI Yongbing, MA Yunwu, LOU Ming, et al. Advances in welding and joining processes of multi-material lightweight car body[J]. Journal of Mechanical Engineering, 2016, 52(24): 1 − 23. doi: 10.3901/JME.2016.24.001
[3] 尹浜兆, 秦瑜, 温鹏, 等. 激光粉末床熔融制备金属骨植入物[J]. 中国激光, 2020, 47(11): 1 − 18. YIN Bangzhao, QIN Yu, WEN Peng, et al. Laser powder bed fusion for fabrication of metal orthopedic implants[J]. Chinese Journal of Lasers, 2020, 47(11): 1 − 18.
[4] 王迪, 邓国威, 杨永强, 等. 金属异质材料增材制造研究进展[J]. 机械工程学报, 2021, 57(1): 186 − 198. doi: 10.3901/JME.2021.01.186 WANG Di, DENG Guowei, YANG Yongqiang, et al. Research progress on additive manufacturing of metal heterogeneous materials[J]. Journal of Mechanical Engineering, 2021, 57(1): 186 − 198. doi: 10.3901/JME.2021.01.186
[5] 钟素娟, 张丽霞, 龙伟民, 等. 异质材料连接研究进展[J]. 电焊机, 2020, 50(9): 118 − 133. doi: 10.7512/j.issn.1001-2303.2020.09.13 ZHONG Sujuan, ZHANG Lixia, LONG Weimin, et al. esearch progress of joining dissimilar materials[J]. Electric Welding Machine, 2020, 50(9): 118 − 133. doi: 10.7512/j.issn.1001-2303.2020.09.13
[6] 冯吉才. 异种材料连接研究进展[J]. 航空学报, 2022, 43(2): 626413. doi: 10.7527/j.issn.1000-6893.2022.2.hkxb202202001 FENG Jicai. Research progress on dissimilar materials joining[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(2): 626413 doi: 10.7527/j.issn.1000-6893.2022.2.hkxb202202001
[7] 宋刚, 赵爽, 李涛涛, 等. 镁合金与钢异质材料焊接的研究进展[J]. 机械工程学报, 2020, 56(8): 1 − 12. doi: 10.3901/JME.2020.08.001 SONG Gang, ZHAO Shuang, LI Taotao, et al. Research progress on welding of magnesium alloy and steel dissimilar materials[J]. Journal of Mechanical Engineering, 2020, 56(8): 1 − 12. doi: 10.3901/JME.2020.08.001
[8] WU X, FU J, WEI S, et al. Bonding mechanisms of SiO2 glass and 1060 Al by ultrasonic assisted active metal soldering process[J]. China Welding, 2023, 32(2): 52 − 62.
[9] 王星星, 吴港, 何鹏, 等. 陶瓷/金属异质钎焊连接研究进展[J]. 稀有金属材料与工程, 2022, 51(7): 2689 − 2697. WANG Xingxing, WU Gang, HE Peng, et al. Research progress of ceramic/metal dissimilar brazing technology[J]. Rare Metal Materials and Engineering, 2022, 51(7): 2689 − 2697.
[10] WU Q, LONG W, ZHANG L, et al. A review on ceramic coatings prepared by laser cladding technology[J]. Optics & Laser Technology, 2024, 176(9): 110993.
[11] SONG X, ZHAO Y, HU S, et al. Wetting of AgCu-Ti filler on porous Si3N4 ceramic and brazing of the ceramic to TiAl alloy[J]. Ceramics International, 2018, 44(5): 4622 − 4629. doi: 10.1016/j.ceramint.2017.11.212
[12] NOMURA M, IWAMOTO C, TANAKA S. Nanostructure of wetting triple line in a Ag-Cu-Ti/Si3N4 reactive system[J]. Acta Materialia, 1999, 47(2): 407 − 413. doi: 10.1016/S1359-6454(98)00375-9
[13] SONG X, CAO J, LI C, et al. Interfacial microstructure and joining properties of TiAl/Si3N4 brazed joints[J]. Materials Science & Engineering A, 2011, 528(22): 7030 − 7035.
[14] PENG H, ZHANG Y, CHEN X. Microstructure and mechanical properties of C/C composite joint brazed with Ni-based filler[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(3): 927 − 934. doi: 10.1016/S1003-6326(22)65843-6
[15] SUN K, YANG Z, MU R, et al. Active brazing of (HfTaZrNbTi)C high-entropy carbide ceramic and Nb with TiNi composite interlayer: novel findings on the reaction layer[J]. Materials Characterization, 2023, 203: 113103. doi: 10.1016/j.matchar.2023.113103
[16] LIU G, WANG A, TANG R, et al. Fabrication and modeling of ultra-hard and high-strength B4C-based laminated ceramics by brazing joining[J]. Ceramics International, 2022, 48(19): 27982 − 27987.
[17] XUE P, SI X, LI C. Achieving high-temperature thermal evacuation between dissimilar materials Cf/C and Mo30Cu by forming a brazed joint[J]. Materials Characterization, 2023, 203: 1 − 11.
[18] LIU D, ZOU J, LIU H, et al. Microstructure, mechanical properties and hermeticity of W-Cu/HTCC brazed joints with surface metallization[J]. International Journal of Refractory Metals and Hard Materials, 2024, 118: 106473. doi: 10.1016/j.ijrmhm.2023.106473
[19] LUO Z, WANG G, ZHAO Y, et al. Brazing SiC ceramics and Zr with CoCrFeNiCuSn high entropy alloy[J]. Ceramics International, 2022, 48(16): 23325 − 23333. doi: 10.1016/j.ceramint.2022.04.320
[20] YAO X, ZHAO Y, HUANG Y, et al. A novel CoCrNi medium entropy alloy enhanced AgCuTi composite filler to braze Kovar alloy and sapphire[J]. Materials Characterization, 2023, 197: 112668. doi: 10.1016/j.matchar.2023.112668
[21] ZHU Q, CAI Y, LIU Z, et al. Brazing Al2O3 to 4J42 using Ag-Cu-Ti/Cu/BNi-2 composite fillers with different thicknesses of Cu interlayer[J]. Ceramics International, 2023, 49(6): 9779 − 9788. doi: 10.1016/j.ceramint.2022.11.152
[22] GUO W, LI K, ZHANG H, et al. Low residual stress C/C composite-titanium alloy joints brazed by foam interlayer[J]. Ceramics International, 2022, 48(4): 5260 − 5266. doi: 10.1016/j.ceramint.2021.11.067
[23] WANG Z, JU Z, BUTT H, et al. In situ dispersed carbon fibre network for reinforcing a C/C composite–TC4 alloy brazed joint[J]. Science and Technology of Welding and Joining, 2023, 28(3): 235 − 241. doi: 10.1080/13621718.2022.2146323
[24] LI J X, FU W, SONG X G, et al. Improving the brazing of SiC ceramic by nano-Si3N4 reinforced BNi-2 composite filler prepared by high-shear processing[J]. Materials Letters, 2023, 331: 133452. doi: 10.1016/j.matlet.2022.133452
[25] ZHANG S, LIN J, WANG C, et al. Improvement of microstructure and mechanical properties of Sapphire/Kovar alloy joints brazed with Ag-Cu-Ti composite filler by adding B powders[J]. Journal of Manufacturing Processes, 2023, 99: 243 − 253. doi: 10.1016/j.jmapro.2023.05.050
[26] SUN Q, YANG L, YANG W, et al. Microstructure evolution and bonding mechanism of ZrO2 ceramic and Ti-6Al-4V alloy joints brazed by Bi2O3-B2O3-ZnO glass paste[J]. Journal of the European Ceramic Society, 2022, 42(13): 5953 − 5963. doi: 10.1016/j.jeurceramsoc.2022.06.016
[27] 陈席国, 姜文雍, 王胜. 陶瓷-金属钎焊接头残余热应力研究进展[J]. 南方农机, 2024, 55(3): 131 − 137. CHEN Xiguo, JIANG Wenyong, WANG Sheng. Research progress on residual thermal stress in ceramic metal brazed joints[J]. China Southern Agricultural Machinery, 2024, 55(3): 131 − 137.
[28] LU Q, HUANG J, DING Z, et al. Enhanced mechanical properties of TZM joint brazed at high temperature using Mo-Ni filler metal with Boron addition[J]. Welding in the World, 2024, 68(9): 2501 − 2509. doi: 10.1007/s40194-024-01783-9
[29] LIU D, XU J, LI X, et al. Influence of Al foil interlayer on performance of vacuum diffusion bonding joint of 6061 aluminium alloy[J]. Journal of Iron and Steel Research International, 2024, 31(10): 2404 − 2412. doi: 10.1007/s42243-024-01302-6
[30] 刘红亮. GH4738/GH3536异种合金钎焊连接及焊后热处理的工艺与机理研究[D]. 北京: 北京科技大学, 2024. LIU Hongliang. Process and mechanism related to the brazing cycle and postbrazing heat treatment of the GH4738/GH3536 dissimilar superalloys[D]. Beijing: University of Science and Technology Beijing, 2024.
[31] 叶晓凤, 王宇, 张恒泉, 等. Al2O3陶瓷/AgCuTi/GH99高温合金的钎焊接头力学性能[J]. 稀有金属材料与工程, 2018, 47(11): 3564 − 3570. YE Xiaofeng, WANG Yu, ZHANG Hengquan, et al. Mechanical properties of alumina ceramic/AgCuTi/GH99 superalloy brazed joints[J]. Rare Metal Materials and Engineering, 2018, 47(11): 3564 − 3570.
[32] 辛成来, 李宁, 颜家振. Al2O3陶瓷Ti + Nb/Mo金属化对其与Kovar合金钎焊连接的组织和力学性能的影响[J]. 焊接学报, 2018, 39(9): 45 − 48. XIN Chenglai, LI Ning, YAN Jiazhen. Investigation of brazing joints of Al2O3 ceramics to Kovar alloys by Ti + Nb/Mo metallization[J]. Transactions of the China Welding Institution, 2018, 39(9): 45 − 48.
[33] 兰亮. Si3N4陶瓷与镍基高温合金的部分瞬间液相扩散工艺与机理的研究[D]. 上海: 上海大学, 2017. LAN Liang. Joining process and bonding mechanism of Si3N4/nickel-based superalloy joints by partial transient liquid phase bonding[D]. Shanghai: Shanghai University, 2017.
[34] WANG J, XIONG Q, WANG J, et al. Microstructure and mechanical properties of YG8/IN718 alloy joints prepared by vacuum brazing[J]. Vacuum, 2019, 169: 108942. doi: 10.1016/j.vacuum.2019.108942
[35] LIU P, ZHONG S, PEI Y, et al. Study on brazing WC-6Co/In718 with in-situ synthesis of Ni/Cu/AgCuNiMn solder[J]. Materials Science and Technology, 2023, 39(16): 2456 − 2463. doi: 10.1080/02670836.2023.2205774
[36] 乔瑞林, 龙伟民, 秦建, 等. YG8/GH4169异种材料钎焊接头残余应力的数值模拟[J]. 焊接学报, 2024, 45(3): 68 − 74. doi: 10.12073/j.hjxb.20230520001 QIAO Ruilin, LONG Weimin, QIN Jian, et al. Numerical simulation of residual stress in YG8/GH4169 dissimilar material brazed joints[J]. Transactions of the China Welding Institution, 2024, 45(3): 68 − 74 doi: 10.12073/j.hjxb.20230520001
[37] QIAO R, QIN J, ZHANG G, et al. Study on the influence of surface nickel plating on the microstructure and mechanical properties of WC-8Co/Inconel 718 brazed joints[J]. Journal of Materials Science, 2024, 59: 6525 − 6536. doi: 10.1007/s10853-024-09335-8
[38] 朱凯涛, 董多, 杨晓红, 等. GH4169/BNi-7钎焊接头的显微组织、力学性能和腐蚀行为[J]. 材料导报, 2024, 38: 1 − 17. doi: 10.11896/cldb.23100078 ZHU Kaitao, DONG Duo, YANG Xiaohong, et al. Microstructure, mechanical properties and corrosion behavior of GH4169/BNi-7 brazed joint[J]. Materials Reports, 2024, 38: 1 − 17. doi: 10.11896/cldb.23100078
[39] LI S , DU D , ZHANG L, et al. A review on filler materials for brazing of carbon-carbon composites[J]. Reviews on Advanced Materials Science, 2021, 60(1): 92-111.
[40] XIA Y, MA Z, DU Q, et al. Microstructure and properties of the TiAl/GH3030 dissimilar joints vacuum-brazed with a Ti-based amorphous filler metal[J]. Materials Characterization, 2024, 207: 113520. doi: 10.1016/j.matchar.2023.113520
[41] BA J, JI X, WANG B, et al. In-situ alloying of BNi2 + Ni interlayer for brazing C/C composites and GH3536 Ni-based superalloy[J]. Journal of Manufacturing Processes, 2021, 67: 52 − 55. doi: 10.1016/j.jmapro.2021.04.061
[42] 杨佳, 张勋业, 马广璐, 等. SiCf/SiC复合材料与镍基高温合金钎焊接头的组织及性能[J]. 机械工程学报, 2021, 57(12): 161 − 168. doi: 10.3901/JME.2021.12.161 YANG Jia, ZHANG Xunye, MA Guanglu, et al. Microstructure and properties of brazed joint between SiCf/SiC composite and Ni-based superalloy[J]. Journal of Mechanical Engineering, 2021, 57(12): 161 − 168. doi: 10.3901/JME.2021.12.161
[43] LI H, WEI H, HE P, et al. Effects of alloying elements in GH99 superalloy on microstructure evolution of reactive brazing TiAl/GH99 joints[J]. Intermetallics, 2013, 34: 69 − 74. doi: 10.1016/j.intermet.2012.11.008
[44] SUN B, XIAO B, LIU S. Microstructure and performance of diamond abrasive grains brazed in mesh belt furnace with ammonia dissociating atmosphere[J]. International Journal of Refractory Metals and Hard Materials, 2016, 60: 154 − 159. doi: 10.1016/j.ijrmhm.2016.07.016
[45] LONG W, LIU D, DONG X, et al. Laser power effects on properties of laser brazing diamond coating[J]. Surface Engineering, 2020, 36: 1315 − 1326. doi: 10.1080/02670844.2020.1758292
[46] LI M, CHEN J, LIN Q, et al. Interfacial microstructures and mechanical integrity of synthetic diamond brazed by a low-temperature Cu-Sn-Cr filler alloy[J]. Diamond and Related Materials, 2019, 97: 107440. doi: 10.1016/j.diamond.2019.107440
[47] DU Q, WANG X, ZHANG S, et al. Research status on surface metallization of diamond[J]. Materials Research Express, 2019, 6(12): 122005.
[48] ZHANG L, LIU Z. Inhibition of intermetallic compounds growth at Sn–58Bi/Cu interface bearing CuZnAl memory particles (2–6 μm)[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(3): 2466 − 2480. doi: 10.1007/s10854-019-02784-x
[49] ZHANG S, XU X, LIN T, et al. Recent advances in nano-materials for packaging of electronic devices[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(15): 13855 − 13868. doi: 10.1007/s10854-019-01790-3
[50] XU Q, ZHANG J, MAO C, et al. Cu-induced enhancement of interfacial bonding for brazed diamond grits with NiCr filler alloys[J]. International Journal of Refractory Metals and Hard Materials, 2022, 106: 105874. doi: 10.1016/j.ijrmhm.2022.105874
[51] CUI B, WANG P, ZHAO W, et al. Adding Zr element to improve the strength and mechanical properties of diamond vacuum-brazed with Ni-Cr boron-free filler alloy[J]. Diamond and Related Materials, 2023, 133: 109722. doi: 10.1016/j.diamond.2023.109722
[52] WANG P, ZHANG L, CHENG Z, et al. Effect of Y on interface characteristics and mechanical properties of brazed diamond with NiCr filler alloy[J]. Diamond and Related Materials, 2023, 132: 109645. doi: 10.1016/j.diamond.2022.109645
[53] FENG S, JIN T, WANG B, et al. Microstructure and properties of brazed diamond with Pr-modified NiCr filler metals[J]. Diamond and Related Materials, 2023, 138: 110224. doi: 10.1016/j.diamond.2023.110224
[54] WANG N, JIN T, SUN H, et al. Exploring the trace rare earth Sm on the microstructure and mechanical performance of brazed diamonds by Ni-Cr filler alloy[J]. Journal of Materials Research and Technology, 2023, 26: 315 − 327. doi: 10.1016/j.jmrt.2023.07.201
[55] LONG W, LU Q, ZHONG S, et al. Research on interface structure and performance of diamond brazed coating based on non-vacuum environment[J]. Welding in the World, 2022, 66(5): 1043 − 1052. doi: 10.1007/s40194-022-01259-8
[56] 龙伟民, 刘大双, 张冠星, 等. 感应钎涂粉末熔融及传热机制[J]. 焊接学报, 2021, 42(11): 29 − 34. doi: 10.12073/j.hjxb.20210916001 LONG Weimin, LIU Dashuang, ZHANG Guanxing, et al. Melting and heat transfer mechanism of powder by induction brazing coating[J]. Transactions of the China Welding Institution, 2021, 42(11): 29 − 34. doi: 10.12073/j.hjxb.20210916001
[57] 龙伟民, 秦建, 路全彬, 等. 旋耕刀感应钎涂层热处理工艺研究[J]. 材料导报, 2022, 36(7): 98 − 102. doi: 10.11896/cldb.21090163 LONG Weimin, QIN Jian, LU Quanbin, et al. Heat treatment process of induction braze coating of rotary blades[J]. Materials Reports, 2022, 36(7): 98 − 102. doi: 10.11896/cldb.21090163
[58] 龙伟民, 刘大双, 王博, 等. 铝微粉对大气环境感应钎涂金刚石涂层性能影响[J]. 焊接学报, 2021, 42(12): 67 − 71. doi: 10.12073/j.hjxb.20210917002 LONG Weimin, LIU Dashuang, WANG Bo, et al. Effect of aluminum powder on properties of induction braze coated diamond layers in atmospheric environment[J]. Transactions of the China Welding Institution, 2021, 42(12): 67 − 71. doi: 10.12073/j.hjxb.20210917002
[59] 龙伟民, 刘大双, 吴爱萍, 等. 金刚石粒度及添加量对大气环境感应钎涂层耐磨性的影响[J]. 机械工程学报, 2023, 59(12): 225 − 235. doi: 10.3901/JME.2023.12.225 LONG Weimin, LIU Dashuang, WU Aiping, et al. Influence of size and content on the wear resistance of induction brazing diamond coating in air[J]. Journal of Mechanical Engineering, 2023, 59(12): 225 − 235. doi: 10.3901/JME.2023.12.225
[60] ZHANG L, LONG W, DU D, et al. The microstructure and wear properties of diamond composite coatings on TC4 made by induction brazing[J]. Diamond and Related Materials, 2022, 125: 109032. doi: 10.1016/j.diamond.2022.109032
[61] 司浩, 秦建, 钟素娟, 等. 感应加热金刚石/镍基复合涂层微观组织与性能[J]. 稀有金属材料与工程, 2023, 52(3): 1027 − 1035. SI Hao, QIN Jian, ZHONG Sujuan, et al. Microstructure and properties of diamond/Ni-based composite coatings by induction heating[J]. Rare Metal Materials and Engineering, 2023, 52(3): 1027 − 1035.
[62] LONG Weimin, LIU Dashuang, QIN Jian, et al. Wear resistance of laser brazing diamond coating with and without pre-machining V-groove on diamond surface[J]. Journal of Adhesion Science and Technology, 2023, 37(2): 319 − 333. doi: 10.1080/01694243.2022.2033025
[63] 伍俏平, 罗舟, 邓朝晖, 等. 两种合金化铜基钎料真空钎焊金刚石[J]. 材料热处理学报, 2018, 39(3): 151 − 166. WU Qiaoping, LUO Zhou, DENG Chaohui, et al. Vacuum brazing of diamonds with two kinds of alloying copper-based filler metals[J]. Transactions of Materials and Heat Treatment, 2018, 39(3): 151 − 166.
[64] 龙伟民, 乔培新, 王海滨, 等. 粉末合成钎料的探讨[J]. 机械工程学报, 2001, 37(10): 107 − 108. doi: 10.3321/j.issn:0577-6686.2001.10.024 LONG Weimin, QIAO Peixin, WANG Haibin, et al. Discussion of powder synthetic filler materials[J]. Journal of Mechanical Engineering, 2001, 37(10): 107 − 108. doi: 10.3321/j.issn:0577-6686.2001.10.024
[65] 龙伟民, 李胜男, 都东, 等. 钎焊材料形态演变及发展趋势(英文)[J]. 稀有金属材料与工程, 2019, 48(12): 3781 − 3790. LONG Weimin, LI Shengnan, DU Dong, et al. Morphological evolution and development trend of brazing materials[J]. Rare Metal Materials and Engineering, 2019, 48(12): 3781 − 3790.
[66] 龙伟民, 郝庆乐, 傅玉灿, 等. 金刚石工具钎焊用连接材料研究进展[J]. 材料导报, 2020, 34(23): 23138 − 23144. doi: 10.11896/cldb.20100102 LONG Weimin, HAO Qingle, FU Yucan, et al. Research progress of filler metals for brazing diamond tools[J]. Materials Reports, 2020, 34(23): 23138 − 23144. doi: 10.11896/cldb.20100102
[67] LI H, LI K, FAN Y, et al. Influence of brazing temperature on interfacial reaction layer characteristics of Cu-Sn-Ti/diamond composites[J]. Diamond and Related Materials, 2022, 128: 109276. doi: 10.1016/j.diamond.2022.109276
[68] CUI B, ZHAO W, ZUO R, et al. The abrasion resistance of brazed diamond using Cu–Sn–Ti composite alloys reinforced with boron carbide[J]. Diamond and Related Materials, 2022, 124: 108926. doi: 10.1016/j.diamond.2022.108926
[69] CUI B, LIU Z, ZUO R, et al. Microstructure and mechanical properties of vacuum brazed diamond abrasive segments with zirconium carbide reinforced Cu-based active filler metals[J]. Diamond and Related Materials, 2022, 126: 109091. doi: 10.1016/j.diamond.2022.109091
[70] CUI B, ZHAO W, ZUO R, et al. Effect of rare earth alloy addition on the microstructure and abrasion resistance of brazed diamonds with Cu-Sn-Ti filler metal[J]. Diamond and Related Materials, 2022, 126: 109110. doi: 10.1016/j.diamond.2022.109110
[71] 李良安. 高频感应加热制作钎焊金刚石磨头的研究[D]. 青岛: 青岛科技大学, 2019. LI Liang'an. Research on brazed diamond grinding head made by high-frequency induction heating[D]. Qingdao: Qingdao University of Science and Technology, 2019.
[72] PATEL H A, MUKHOPADHYAY P, GHOSH S, et al. The effect of temperature and dwell time on diamond-WC brazed joint quality using low-melting point active Ag-Cu-In alloy[J]. Diamond and Related Materials, 2023, 139: 110308. doi: 10.1016/j.diamond.2023.110308
[73] ZHU H, QIN J, SONG X, et al. Research on laser brazing diamond coating process based on temperature field finite element simulation and machine learning[J]. Diamond and Related Materials, 2024, 149: 11647.
[74] XIN C, ZHAO X, GENG H, et al. Microstructure, grain and nanowire growth during selective laser melting of Ag-Cu/diamond composites[J]. RSC Advances, 2023, 13(6): 3448 − 3458. doi: 10.1039/D2RA05965G
[75] LI Y, YANG N, FAN D, et al. Effect of Fe2O3 nanoparticle on the interface microstructure and properties of Al/Cu plasma arc fusion-brazing joints[J]. China Welding, 2023, 32(3): 10 − 20.
[76] DING K, HU T, WU T, et al. Role of the position of the laser spot in the failure transition during the tensile test for the laser welding-brazing of galvanized CRRA1000 steel to 5754 aluminum alloy in an overlapped joint[J]. Materials Science & Engineering A, 2023, 880: 145314. doi: 10.1016/j.msea.2023.145314
[77] XIE J, CAI C, ZHANG B, et al. Microstructure evolution and fracture behavior of rotating laser welded-brazed 6061 aluminum alloys/304 SS dissimilar joint[J]. Materials Characterization, 2023, 195: 112543. doi: 10.1016/j.matchar.2022.112543
[78] WANG L, MA Y, XU J. Numerical simulation of arc-droplet-weld pool behaviors during the external magnetic field-assisted MIG welding-brazing of aluminum to steel[J]. International Journal of Thermal Sciences, 2023, 194: 108530. doi: 10.1016/j.ijthermalsci.2023.108530
[79] 王秋影, 邱培现, 孙进发, 等. 超声振动辅助铝/钢激光-MIG熔钎焊外观成形、组织以及拉伸性能研究[J]. 精密成形工程, 2023, 15(5): 123 − 130. WANG Qiuying, QIU Peixian, SUN Jinfa, et al. Forming, microstructure and tensile properties of aluminum/steel joint by ultrasonic vibration assisted laser-MIG welding-brazing[J]. Journal of Netshape Forming Engineering, 2023, 15(5): 123 − 130.
[80] 单琪, 张超, 谢鹏, 等. 铝合金与镀铜钢CMT熔钎焊技术研究[J]. 热加工工艺, 2024, 53(1): 48 − 52. SHAN Qi, ZHANG Chao, XIE Peng, et al. Research on CMT welding-brazing technology of aluminum alloy and copper plated steel[J]. Hot Working Technology, 2024, 53(1): 48 − 52.
[81] 邓呈敏. 铝/铜异种材料激光熔钎焊技术及接头腐蚀行为研究[D]. 北京: 北京石油化工学院, 2023. DENG Chengmin. Study on laser fusion brazing technology of aluminium/copper dissimilar materials and the corrosion behavior of the joint[D]. Beijing: Institute of Petrochemical Technology, 2023.
[82] 王龙, 胡德安, 陈益平, 等. 交变磁场对MIG熔钎焊铝铜接头组织性能的影响[J]. 稀有金属, 2022, 46(12): 1657 − 1662. WANG Long, HU Dean, CHEN Yiping, et al. Microstructure and properties of MIG welding-brazing aluminum copper joint with alternating magnetic field[J]. Chinese Journal of Rare Metals, 2022, 46(12): 1657 − 1662.
[83] LI Y, TANG X, LU F, et al. Dual beam laser fusion-brazed Ti6Al4V/AA7075 dissimilar lap joint: crack inhibition via inoculation with TiC nanoparticles[J]. Materials Characterization, 2022, 191: 112127. doi: 10.1016/j.matchar.2022.112127
[84] HE H, LIU Z, ZHANG L, et al. Dissimilar CMT joining of aluminum to Ti-Ni-Hf shape memory alloy with Al-Si filler[J]. Journal of Materials Research and Technology, 2023, 24: 8635 − 8643. doi: 10.1016/j.jmrt.2023.05.108
[85] 龙伟民, 张冠星, 张青科, 等. 钎焊过程原位合成高强度银钎料[J]. 焊接学报, 2015, 36(11): 1 − 4. LONG Weimin, ZHANG Guanxing, ZHANG Qingke, et al. In-situ synthesis of high strength Ag brazing filler metals during brazing process[J]. Transactions of the China Welding Institution, 2015, 36(11): 1 − 4.
[86] LONG W, ZHANG G, ZHANG Q. In situ synthesis of high strength Ag brazing filler metals during induction brazing process[J]. Scripta Materialia, 2015, 110: 41 − 43.
[87] LU Q, LONG W, ZHONG S, et al. TZM/graphite interface behavior in high-temperature brazing by Ti-based brazing filler materials[J]. Welding in the World, 2020, 64(11): 1877 − 1885. doi: 10.1007/s40194-020-00967-3
[88] 杨浩哲, 裴夤崟, 沈元勋, 等. ZrCuNi中间层瞬间液相焊扩散连接纯钛TA2工艺研究[J]. 电焊机, 2023, 53(4): 81 − 89. YANG Haozhe, PEI Yinyin, SHEN Yuanxun, et al. Study on transient liquid phase bonded of CP-Ti TA2 joint with ZrCuNi interlayer[J]. Electric Welding Machine, 2023, 53(4): 81 − 89.
[89] XU B, HUANG P, JIANG Q, et al. Joining of graphite to Mo using Ti/Cu and Ti/Cu/Nb/Ti/Cu foils[J]. Science and technology of welding and joining, 2023, 28(9): 974 − 982. doi: 10.1080/13621718.2023.2255767
[90] HOU Z, ZHAO X, GU Y, et al. Enhancement mechanism of Te doping on microstructure, wettability and mechanical properties of Sn-Bi-based solder[J]. Materials Science & Engineering A, 2022, 848: 143445. doi: 10.1016/j.msea.2022.143445
[91] ZHANG S, ZHAO G, ZHANG C, et al. Microstructure characteristics and mechanical properties of TiAl alloy joint brazed with CoCuFeNiTi1.2V0.4 high entropy alloy filler[J]. Intermetallics, 2023, 162: 108043. doi: 10.1016/j.intermet.2023.108043
[92] ZHAO S, CHEN H Y, NAI X, et al. Effect of Ti content on microstructure and mechanical properties of SiCf/SiC composites/GH536 superalloy joints brazed with CoFeCrNiCuTi high entropy filler[J]. Journal of Manufacturing Processes, 2023, 85: 132 − 140. doi: 10.1016/j.jmapro.2022.11.045
[93] YANG J, BAO L, LONG W, et al. Microstructure and properties analysis of the brazing alloy prepared from recycled E-waste[J]. Frontiers in Chemistry, 2022, 10: 103855.
[94] 高华, 程志, 李炎秋, 等. 不同钎料对YG16硬质合金/35CrMo钢钎焊接头组织与性能的影响[J]. 轨道交通材料, 2023, 2(4): 12 − 18. GAO Hua, CHENG Zhi, LI Yanqiu, et al. Influence of different brazing filler metals on microstructure and properties of YG16 hard metal/35CrMo brazing joint[J]. Materials for Rail Transportation System, 2023, 2(4): 12 − 18.
[95] 高泽, 刘博, 郑立彦, 等. 硬质合金与结构钢钎焊结构低温力学性能试验[J]. 南京航空航天大学学报, 2022, 54(3): 404 − 410. GAO Ze, LIU Bo, ZHENG Liyan, et al. Experiment of low temperature mechanical properties for brazing structure of hard alloy steel and structural steel[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2022, 54(3): 404 − 410.
[96] HABIBI F, SAMADI A, NOURI M. Microstructural evolution during low-temperature brazing of WC-Co cemented carbide to AISI 4140 steel using a silver-based filler alloy[J]. International Journal of Refractory Metals and Hard Materials, 2023, 116: 106354.
[97] TILLMANN W, ULITZKA T, DAHL L, et al. Application of nickel plating by galvanization on steel surface of brazed cemented carbide-maraging steel joints[J]. Welding in the World, 2023, 67(5): 1313 − 1324. doi: 10.1007/s40194-022-01461-8
[98] HUANG S, RUI Z, XIE Z. Mechanism of oxide film removal and analysis of diffusion behavior of interfacial elements during magnetic pulse-assisted semi-solid brazing[J]. Journal of Materials Processing Technology, 2023, 318: 118030. doi: 10.1016/j.jmatprotec.2023.118030
[99] 王禾, 周健, 戴岚, 等. 基于陶瓷基板微系统T/R组件的焊接技术研究[J]. 电子与封装, 2023, 23(11): 43 − 50. WANG He, ZHOU Jian, DAI Lan, et al. Research on welding technology for micro-system T/R components based on ceramic substrates[J]. Electronics & Packaging, 2023, 23(11): 43 − 50.
[100] 程东锋, 胡晓宇, 周达, 等. 相控阵雷达T/R模块封装复合材料现状及发展趋势[J]. 复合材料学报, 2023, 40(8): 4440 − 4459. CHENG Dongfeng, HU Xiaoyu, ZHOU Da, et al. Research status and development trend of composite materials for phased array radar T/R module packaging[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4440 − 4459.
[101] 刘佳欣, 彭洋, 胡剑雄, 等. 耐高温微系统气密封装技术及高温可靠性研究[J]. 中国科学: 信息科学, 2023, 53(4): 803 − 814. LIU Jiaxin, PENG Yang, HU Jianxiong, et al. High-temperature microsystem packaging technology and high-temperature reliability[J]. Scientia Sinica(Informationis), 2023, 53(4): 803 − 814.
[102] 彭必荣, 肖华, 欧阳忠华, 等. 激光软钎焊在微电子焊接领域的应用及发展[J]. 电焊机, 2023, 53(10): 65 − 70. doi: 10.7512/j.issn.1001-2303.2023.10.10 PENG Birong, XIAO Hua, OUYANG Zhonghua, et al. Application and development of laser soldering in microelectronic welding[J]. Electric Welding Machine, 2023, 53(10): 65 − 70. doi: 10.7512/j.issn.1001-2303.2023.10.10
[103] 刘嘉希. 铝铜软钎焊用Sn-Zn-Bi基无铅钎料性能研究[D]. 大连: 大连理工大学, 2016. LIU Jiaxi. Study on properties of Sn-Zn-Bi based lead-free solders for soldering Al and Cu[D]. Dalian: Dalian University of Technology, 2016.
[104] 陈晨, 张亮, 王曦, 等. Zn-Al系钎焊材料的研究进展[J]. 材料导报, 2023, 37(22): 138 − 150. CHEN Chen, ZHANG Liang, WANG Xi, et al. Research progress on Zn-Al based brazing materials[J]. Materials Reports, 2023, 37(22): 138 − 150.
[105] 龙伟民, 赵月, 钟素娟, 等. 铜/铝异质钎焊连接界面金属间化合物的研究进展(英文)[J]. 稀有金属材料与工程, 2021, 50(1): 7 − 13. LONG Weimin, ZHAO Yue, ZHONG Sujuan, et al. Research progress on intermetallic compounds in copper-aluminum brazed joints[J]. Rare Metal Materials and Engineering, 2021, 50(1): 7 − 13.
[106] JI F, XUE S, DAI W. Effects of Ti on the brazability of Zn-22Al-xTi filler metals as well as properties of Cu/Al brazing joints[J]. Rare Metal Materials and Engineering, 2013, 42(12): 2453 − 2457. doi: 10.1016/S1875-5372(14)60037-0
[107] 曾勇谋, 刘莹, 曹宇, 等. 人造金刚石精密刀具钎焊工艺及切削磨损研究[J]. 超硬材料工程, 2023, 35(3): 16 − 20. doi: 10.3969/j.issn.1673-1433.2023.03.005 ZENG Yongmou, LIU Ying, CAO Yu, et al. Research on brazing technology and cutting wear of synthetic diamond precision tool[J]. Superhard Materials Engineering, 2023, 35(3): 16 − 20. doi: 10.3969/j.issn.1673-1433.2023.03.005
[108] 陈刚, 邓人钦, 薛伟, 等. 硬质合金与钢焊接的研究进展[J]. 材料导报, 2022, 36(22): 253 − 261. CHEN Gang, DENG Renqin, XUE Wei, et al. Research progress of welding between cemented carbide and steel[J]. Materials Reports, 2022, 36(22): 253 − 261.
[109] 刘建设, 汪曙光, 王良文, 等. 中国超硬材料合成装备技术发展路径综述[J]. 超硬材料工程, 2024, 36(1): 41 − 49. doi: 10.3969/j.issn.1673-1433.2024.01.011 LIU Jianshe, WANG Shuguang, WANG Liangwen, et al. A review on development path of super-hard material synthetic equipment and technology in China[J]. Superhard Materials Engineering, 2024, 36(1): 41 − 49. doi: 10.3969/j.issn.1673-1433.2024.01.011
[110] 罗蒙丽. 硬质合金钎焊技术的现状与发展[J]. 硬质合金, 2015, 32(2): 108 − 118. LUO Mengli. Current status and development of brazing technology cemented carbide[J]. Cemented Carbides, 2015, 32(2): 108 − 118.
[111] 张冠星, 钟素娟, 沈元勋, 等. 梯度三明治钎料钎焊过程组织演变及力学性能分析[J]. 焊接学报, 2023, 44(9): 37 − 43. doi: 10.12073/j.hjxb.20221020001 ZHANG Guanxing, ZHONG Sujian, SHEN Yuanxun, et al. Research on microstructure evolution and mechanical properties of gradient sandwich filler metal during brazing[J]. Transactions of the China Welding Institution, 2023, 44(9): 37 − 43. doi: 10.12073/j.hjxb.20221020001
[112] 邵国栋, 史振宇. 钎焊金刚石磨粒钻钻削C/SiC陶瓷基复合材料孔时切屑对钻削过程的影响[J]. 金刚石与磨料磨具工程, 2022, 42(3): 348 − 355. SHAO Guodong, SHI Zhenyu. Effect of chips on drilling process when drilling C/SiC ceramic matrix composite holes with brazed diamond abrasive drill[J]. Diamond & Abrasives Engineering, 2022, 42(3): 348 − 355.
[113] 朱袁琦. PCD刀具高频感应钎焊温度场研究[D]. 大连: 大连理工大学, 2019. ZHU Yuanqi. Research on PCD tool's temperature field during hi-frequency induction brazing[D]. Dalian, China: Dalian University of Technology, 2019.
[114] 王君临. 应用于奥氏体耐热铸钢加工的钎焊CBN磨具的研究[D]. 南京: 南京航空航天大学, 2021. WANG Junlin. Research on brazed CBN grinding tool applied to austenitic heat resistant cast steel[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021.
[115] 王者, 王梦潇, 丁坤英. 民航发动机深度维修技术发展与展望[J]. 航空维修与工程, 2023(7): 24 − 29. doi: 10.3969/j.issn.1672-0989.2023.07.007 WANG Zhe, WANG Mengxiao, DING Kunying. The development and outlook of civil aviation engine depth maintenance technology[J]. Aviation Maintenance & Engineering, 2023(7): 24 − 29. doi: 10.3969/j.issn.1672-0989.2023.07.007
[116] 卓义民, 陈远航, 杨春利. 航空发动机叶片焊接修复技术的研究现状及展望[J]. 航空制造技术, 2021, 64(8): 22 − 28. ZHUO Yimin, CHEN Yuanhang, YANG Chunli. Research status and prospects of welding repair technology for aero-engine blades[J]. Aeronautical Manufacturing Technology, 2021, 64(8): 22 − 28.
[117] LONG W M. Highly reliable joints between dissimilar materials[J]. Journal of Iron and Steel Research International, 2024, 31(10): 2327 − 2328. doi: 10.1007/s42243-024-01358-4
-
期刊类型引用(2)
1. 王永祥,何柏林,李力. 超声冲击改善P355NL1钢焊接接头腐蚀疲劳性能研究. 中国腐蚀与防护学报. 2022(01): 120-126 . 百度学术
2. 万里平,董汪平. EN 13445标准的焊接接头疲劳评定方法及其与ASME Ⅷ-2疲劳评定的对比. 压力容器. 2021(08): 66-75 . 百度学术
其他类型引用(3)