Simulation and process optimization of laser welding for flat wire electric motor copper terminals
-
摘要:
采用数值模拟的方法对紫铜端子激光焊接过程中复杂的熔池流动行为和气孔的形成及抑制机制展开了深入的研究. 文中建立了激光扫描焊接传热 — 流动耦合模型,探索了扫描轨迹对焊缝熔深和接合面积的影响,阐明了接头气孔生成及抑制机制,基于响应面法预测接头机械剥离力并优化焊接参数. 结果表明,椭圆线轨迹下激光束能量能够更稳定的在匙孔壁面和匙孔底部传递,使得焊缝平均熔深和接合面积更大. 匙孔深度和温度梯度是影响气孔生成的主要因素,椭圆线轨迹的焊缝气孔体积小,且生成位置相对焊缝位置存在偏移,气孔对接头性能影响小. 针对椭圆线轨迹的焊接参数优化后,激光束能量向匙孔底部转移,使得焊缝和接头区域的平均熔深较大. 优化后焊接参数为椭圆线轨迹,激光功率为
4224 W,扫描幅度 为2.5 mm,比例为3∶1,扫描圈数为3,接头机械剥离力达到779.6 N,与定点焊相比提高了 126%.Abstract:A numerical simulation method was employed to carry out an in-depth study on the complex molten pool flow behavior and the formation and inhibition mechanisms of porosity in the laser welding process of copper terminals. A coupled heat transfer–flow model of laser scanning welding was established, and the effect of scanning trajectory on depth of fusion and joint area was explored. The generation and inhibition mechanisms of joint porosity were clarified, and the mechanical peeling force at the joint based on the response surface method was predicted, with the welding parameters optimized. The results show that the laser beam energy can be transmitted more stably in the keyhole wall and the bottom of the keyhole under the elliptical line trajectory, resulting in a larger average depth of fusion of the weld and joint area. The depth of the keyhole and the temperature gradient are the main factors affecting the generation of porosity, and the volume of the porosity of the weld under the elliptical line trajectory is small. The generation position is shifted with respect to the position of the weld so that the porosity has little effect on the performance of the joint. After the optimization of welding parameters for elliptical line trajectory, the laser beam energy is transferred to the bottom of the keyhole, which makes the average depth of fusion of the weld and joint area larger. The optimized welding parameters yield an elliptical line trajectory, laser power of 4 224 W, scanning amplitude of 2.5 mm, ratio of 3:1, number of scanning circles of 3, and mechanical peeling force at the joint of 779.6 N, which is 1.26 times higher than that of fixed-point welding.
-
Keywords:
- numerical simulation /
- flat wire motor /
- copper terminals /
- laser welding /
- response surface method
-
-
表 1 TU1紫铜主要化学成分
Table 1 Chemical compositions of TU1 copper
Cu P Bi Sb As Fe Ni Pb S 余量 ≥99.97 ≤0.002 ≤0.001 ≤0.002 ≤0.002 ≤0.004 ≤0.002 ≤0.003 ≤0.004 ≤0.009 表 2 TU1紫铜热物性参数
Table 2 Thermal physical properties of TU1 copper
固相比热容
γs/(J·(kg·K)−1)液相比热容
γl/(J·(kg·K)−1)固相热导率
cs/(W·(m·K)−1)液相热导率
cl/(W·(m·K)−1)固相线温度
Ts/K液相线温度
Tl/K熔化潜热
ΔHs/(kJ·kg−1)385 469 380 150 1380 1250 209 蒸发潜热
ΔHl/(kJ·kg−1)液相线表面张力
σ1/(N·m−1)表面张力梯度
(dσ/dT)/(N·(m·k)−1)动力粘度
μ/(Pa·s)饱和蒸气压
Pv/MPa蒸发温度
Tv/K初始温度
T0/K4730 1.257 0.0002 0.004 0.1013 2835 300 表 3 试验方案及对应的响应值
Table 3 Experimental design and corresponding response values
编号 扫描幅度 A/mm 比例 S 扫描圈数 f 机械剥离力 F/N 1 1 1 4 464.7 2 3 1 4 365.8 3 1 3 4 465.8 4 3 3 4 602.0 5 1 2 3 531.2 6 3 2 3 478.5 7 1 2 5 555.9 8 3 2 5 431.6 9 2 1 3 492.3 10 2 3 3 768.5 11 2 1 5 501.1 12 2 3 5 619.6 13 2 2 4 645.9 14 2 2 4 657.8 15 2 2 4 689.4 16 2 2 4 704.1 17 2 2 4 616.8 表 4 模型方差分析
Table 4 Model analysis of variance
来源 平方和 SS(10−9) 自由度 DF 均方 MS(10−9) 组内差异 F 差异显著性 P 拟合模型 2203.000 9 2203.000 22.16 0.0002 A 84.380 1 84.380 7.64 0.0279 S 598.900 1 598.900 54.22 0.0002 f 22.100 1 22.100 2.00 0.2001 AS 284.900 1 284.900 25.79 0.0014 Af 24.180 1 24.180 2.19 0.1825 Sf 30.340 1 30.340 2.75 0.1414 A2 945.200 1 945.200 85.58 < 0.0001 S2 147.900 1 147.900 13.39 0.0081 f2 5.451 1 5.451 0.49 0.5051 R2 0.9661 Adj.R2 0.9225 -
[1] 李远远, 唐峰, 柯凯. 新能源扁线电机hairpin激光焊接头组织与性能分析[J]. 焊接, 2024(4): 74 − 80. LI Yuanyuan, TANG Feng, KE Kai. Microstructure and properties analysis of hairpin laser welded joints for new energy vehicles flat wire motors[J]. Welding & Joining, 2024(4): 74 − 80.
[2] VOGEL A, BAADER M, WIRTHMANN F, et al. Design, construction, and laser welding of a contact ring for automated and reliable coil connection for wound power-dense flat wired stators[C]//2024 IEEE 69th Holm Conference on Electrical Contacts (HOLM), October 6-10, 2024, IEEE, Annapolis. New York: IEEE, 2024.
[3] D'ARCANGELO S, CAPRIO L, CHESI D, et al. Comprehensive benchmarking of laser welding technologies including novel beam shapes and wavelengths for e-drive copper hairpins[J]. Optics & Laser Technology, 2024, 169: 109964.
[4] NING J, ZHANG L J. Non-contact ultrasonic-assisted laser welding of copper hairpins[J]. Journal of Materials Research and Technology, 2024, 31: 3536 − 3550. doi: 10.1016/j.jmrt.2024.07.085
[5] YU H Y, YIN Y S, JI S, et al. Laser welding method and quality analysis of hairpin windings based on visual recognition of gap and displacement matching process[J]. Optics & Laser Technology, 2024, 178: 111224.
[6] ZHANG S Q, WANG S W, WANG L Y, et al. Microstructure and mechanical properties of TC4 titanium alloy laser beam welded joint[J]. China Welding, 2024, 33(4): 58 − 64.
[7] 宫照亮, 蒋平, 施建宏, 等. 动力电池1060铝合金薄板可调环形光斑激光搭接焊工艺优化[J]. 焊接学报, 2023, 44(11): 67 − 79. GONG Zhaoliang, JIANG Ping, SHI Jianhong, et al. Optimization of laser lap welding process of power battery 1060 aluminum alloy sheet with adjustable ring spot[J]. Transactions of the China Welding Institution, 2023, 44(11): 67 − 79.
[8] 周广涛, 邝景臻, 温秋玲, 等. 纳秒激光直写表面辅助下紫铜的激光焊成形及接头组织和性能[J]. 焊接学报, 2023, 44(4): 21 − 29. ZHOU Guangtao, KUANG Jingzhen, WEN Qiuling, et al. Microstructure and property of copper laser welding joint assisted by the surface pretreated by nanosecond laser direct writing[J]. Transactions of the China Welding Institution, 2023, 44(4): 21 − 29.
[9] TANG Z J, WAN L, YANG H H, et al. Stable conduction mode welding of conventional high-reflectivity metals with 2000 W blue laser[J]. Optics & Laser Technology, 2024, 168: 109971.
[10] DIMATTEO V, ASCARI A, FAVERZANI P, et al. The effect of process parameters on the morphology, mechanical strength and electrical resistance of CW laser-welded pure copper hairpins[J]. Journal of Manufacturing Processes, 2021, 62: 450 − 457. doi: 10.1016/j.jmapro.2020.12.018
[11] 李华晨, 周广涛, 陈梅峰, 等. 分步气体介质下低功率激光焊接薄板紫铜成形及组织和性能[J]. 焊接学报, 2020, 41(10): 65 − 72. LI Huachen, ZHOU Guangtao, CHEN Meifeng, et al. Research on laser welding formability and microstructure property of copper in stepwise gas medium[J]. Transactions of the China Welding Institution, 2020, 41(10): 65 − 72.
[12] OMLOR M, SEITZ N, BUTZMANN T, et al. Quality characteristics and analysis of input parameters on laser beam welding of hairpin windings in electric drives[J]. Welding in the World, 2023, 67(6): 1491 − 1508. doi: 10.1007/s40194-023-01500-y
[13] 郑建超, 李锋, 谢洪志, 等. TC4钛合金激光点焊工艺研究[J]. 金属加工(热加工), 2025(2): 57 − 63. ZHENG Jianchao, LI Feng, XIE Hongzhi, et al. Study on laser spot welding process of TC4 titanium alloy[J]. MW Metal Forming, 2025(2): 57 − 63.
[14] CHEN H C, BI G J, NAI M, et al. Enhanced welding efficiency in laser welding of highly reflective pure copper[J]. Journal of Materials Processing Technology, 2015, 216: 287 − 293. doi: 10.1016/j.jmatprotec.2014.09.020
[15] MATSUMOTO T, FUJII H, UEDA T, et al. Measurement of surface tension of molten copper using the free-fall oscillating drop method[J]. Measurement Science and Technology, 2005, 16(2): 432. doi: 10.1088/0957-0233/16/2/014
[16] GENG S N, YANG W, JIANG P, et al. Numerical study of keyhole dynamics and porosity formation during high‐power oscillating laser welding of medium‐thick aluminum alloy plates[J]. International Journal of Heat and Mass Transfer, 2022, 194: 123084. doi: 10.1016/j.ijheatmasstransfer.2022.123084
[17] 信靖飞. 烧蚀瑞利-泰勒不稳定性的数值模拟[D]. 合肥: 中国科学技术大学, 2023. XIN Jingfei. Numerical simulations of the ablative Rayleigh-Taylor instability[D]. Hefei: University of Science and Technology of China, 2023.
-
期刊类型引用(0)
其他类型引用(1)