高级检索

选区激光熔化Ti-6Al-4V合金微观组织与腐蚀行为

王怀慎, 陈磊, 张红霞, 柴斐, 闫晓英, 董鹏

王怀慎, 陈磊, 张红霞, 柴斐, 闫晓英, 董鹏. 选区激光熔化Ti-6Al-4V合金微观组织与腐蚀行为[J]. 焊接学报, 2025, 46(4): 125-132. DOI: 10.12073/j.hjxb.20240106001
引用本文: 王怀慎, 陈磊, 张红霞, 柴斐, 闫晓英, 董鹏. 选区激光熔化Ti-6Al-4V合金微观组织与腐蚀行为[J]. 焊接学报, 2025, 46(4): 125-132. DOI: 10.12073/j.hjxb.20240106001
WANG Huaishen, CHEN Lei, ZHANG Hongxia, CHAI Fei, YAN Xiaoying, DONG Peng. Microstructure and corrosion behavior of Ti-6Al-4V alloy using selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(4): 125-132. DOI: 10.12073/j.hjxb.20240106001
Citation: WANG Huaishen, CHEN Lei, ZHANG Hongxia, CHAI Fei, YAN Xiaoying, DONG Peng. Microstructure and corrosion behavior of Ti-6Al-4V alloy using selective laser melting[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(4): 125-132. DOI: 10.12073/j.hjxb.20240106001

选区激光熔化Ti-6Al-4V合金微观组织与腐蚀行为

基金项目: 山西省重点研发计划(202102150401003)
详细信息
    作者简介:

    王怀慎,硕士研究生;主要研究方向为金属增材制造及先进连接行为;Email: whs9804@163.com

    通讯作者:

    董鹏,博士,副教授;Email: dongpeng@tyut.edu.cn.

  • 中图分类号: TG 456.7

Microstructure and corrosion behavior of Ti-6Al-4V alloy using selective laser melting

  • 摘要:

    为了揭示选区激光熔化(selective laser melting,SLM)在钛合金水下装备触水部件上的应用可行性,文中对SLM制备的Ti64合金在模拟海水环境下的耐腐蚀性能进行了研究. 结果表明,SLM制备Ti64合金主要以针状α'马氏体组织为主,β相的含量约为0.3%. 对比电化学测试发现,在质量分数为3.5%的NaCl溶液中,SLM制备Ti64合金的开路电位Eocp为−119.3 mV,远低于与锻造Ti64合金的234.12 mV. 采用外推法分析动电位极化曲线,SLM制备Ti64合金的腐蚀电位Ecorr为−237.3 mV,同样低于锻造Ti64合金的118.4 mV;采用等效电路对阻抗谱进行拟合分析,SLM制备Ti64合金钝化膜电阻 Rf 和电荷转移电阻Rct 分别为184.1 kΩ·cm2和2.76 × 105 MΩ·cm2,均低于锻造Ti64合金,钝化膜电阻 Rf 和电荷转移电阻Rct 分别为231 kΩ·cm2和4.26 × 105 MΩ·cm2. 通过对不同应变速率下的慢应变应力腐蚀结果进行分析,在应变速率为1 × 10−5 s−1,5 × 10−5 s−1和1 × 10−6 s−1下,SLM 制备Ti64合金的应力腐蚀敏感性分别为20.2%,17.2%和14.4%,均高于同等条件锻造Ti64合金的−1.4%,12.9%和10.8%.

    Abstract:

    To reveal the feasibility of applying selective laser melting (SLM) to titanium alloy-made underwater equipment components, the corrosion resistance of SLM-prepared Ti64 alloy in a simulated seawater environment was explored. The research finds that the SLM-prepared Ti64 alloy primarily consists of needle-like α' martensite, with a β-phase content of approximately 0.3%. Comparison through electrochemical tests reveals that in a NaCl solution with a mass fraction of 3.5%, the open-circuit potential of SLM-prepared Ti64 is −119.3 mV, significantly lower than that of wrought Ti64 (234.12 mV). The analysis of the potentiodynamic polarization curves using the extrapolation method shows that the corrosion potential (Ecorr) of the SLM-prepared Ti64 is −237.3 mV, also lower than that of wrought Ti64 (118.4 mV). By fitting the impedance spectra with an equivalent circuit model, the passive film resistance (Rf) and charge transfer resistance (Rct) of the SLM-prepared Ti64 alloy are 192.4 kΩ·cm2 and 2.69 MΩ·cm2, respectively, both lower than those of wrought Ti64 (235 kΩ·cm2 and 4.34 MΩ·cm2). The slow stress and strain corrosion results at different strain rates are analyzed. At strain rates of 10−5 s−1, 5 × 10–6 s−1, and 10–6 s−1, the stress corrosion susceptibility of the SLM-prepared Ti64 alloy is 20.2%, 17.2%, and 14.4%, respectively, all higher than that of wrought Ti64 under the same conditions (−1.4%, 12.9%, and 10.8%).

  • 图  1   Ti64合金粉末的形貌和粒径分布

    Figure  1.   Powder particle morphology and size distribution of Ti64 alloy. (a) powder particle morphology; (b) size distribution

    图  2   SLM Ti64合金和锻造Ti64合金的EBSD

    Figure  2.   EBSD of SLM Ti64 alloy and wroughted Ti64 alloy. (a) orientation map of SLM Ti64 alloy; (b) phase map of SLM Ti64 alloy; (c) pole figure of SLM Ti64 alloy; (d) orientation map of wroughted Ti64 alloy; (e) phase map of wroughted Ti64 alloy; (f) pole figure of wroughted Ti64 alloy

    图  3   试样的开路电位

    Figure  3.   Open circuit potential of specimens

    图  4   动电位极化曲线

    Figure  4.   Potentiodynamic polarization curves

    图  5   交流阻抗谱

    Figure  5.   Electrochemical impedance spectroscopy. (a) Nyquist plots; (b) Bode plots; (c) fitted equivalent circuits

    图  6   电化学腐蚀形貌与元素分布

    Figure  6.   Electrochemical corrosion morphology andelement distribution. (a) corrosion morphology of wrought; (b) element distribution of wrought; (c) corrosion morphology of SLM; (d) element distribution of SLM

    图  7   慢应变应力腐蚀结果

    Figure  7.   Slow strain rate stress corrosion results. (a) stress strain curves at a strain rate of 1 × 10−5 s−1; (b) stress strain curves at a strain rate of 5 × 10−5 s−1; (c) stress strain curves at a strain rate of 1 × 10−6 s−1

    表  1   SLM工艺参数

    Table  1   SLM parameters

    光斑直径
    d/μm
    激光功率
    P/W
    扫描速度
    v/(mm·s−1)
    层厚
    δ/mm
    扫描间距
    h/mm
    15019012000.030.03
    下载: 导出CSV

    表  2   应力腐蚀试验参数

    Table  2   Parameters of stress corrosion test

    试样 成形工艺 腐蚀介质 应变速率
    η/(10−5 s−1)
    1 SLM 空气 1.0
    2 SLM NaCl溶液 1.0
    3 SLM 空气 5.0
    4 SLM NaCl溶液 5.0
    5 SLM 空气 0.1
    6 SLM NaCl溶液 0.1
    7 锻造 空气 1.0
    8 锻造 NaCl溶液 1.0
    9 锻造 空气 5.0
    10 锻造 NaCl溶液 5.0
    11 锻造 空气 0.1
    12 锻造 NaCl溶液 0.1
    下载: 导出CSV

    表  3   交流阻抗谱拟合结果

    Table  3   Fitted results of electrochemical impedance spectroscopy

    成形工艺 溶液电阻
    Rs /(Ω·cm2)
    膜抗电阻
    Rf /(kΩ·cm2)
    电荷转移电阻
    Rct /(105MΩ·cm2)
    锻造 2.39 231.0 4.26
    SLM 2.38 184.1 2.76
    下载: 导出CSV

    表  4   慢应变应力腐蚀性能

    Table  4   slow strain rate stress corrosion properties

    试样 抗拉强度 Rm /MPa 断裂时间 t/h 断后伸长率 A(%) 应力腐蚀敏感性指数 Issc(%)
    1 1124.1 3.27 11.78 20.2
    2 1083.2 2.72 9.80 20.2
    3 1104.7 6.52 11.72 17.2
    4 1102.4 6.15 11.07 17.2
    5 1095.6 32.70 11.76 14.4
    6 1086.3 28.60 10.28 14.4
    7 978.8 4.41 15.86 − 1.4
    8 915.2 4.47 16.08 − 1.4
    9 963.6 7.36 13.24 12.9
    10 934.8 6.52 11.72 12.9
    11 970.5 41.10 14.78 10.8
    12 919.8 37.10 13.34 10.8
    下载: 导出CSV
  • [1] 沈磊, 黄健康, 刘光银, 等. 等离子弧 + 交流辅助电弧增材制造钛合金微观组织与性能[J]. 焊接学报, 2023, 44(10): 57 − 63. doi: 10.12073/j.hjxb.20220918002

    SHEN Lei, HUANG Jiankang, LIU Guangyin, et al. Microstructure and properties of titanium alloy made by plasma arc and AC auxiliary arc additive manufacturing[J]. Transactions of the China Welding Institution, 2023, 44(10): 57 − 63. doi: 10.12073/j.hjxb.20220918002

    [2]

    DING H H, ZHANG J, LIU J Y, et al. Effect of volume energy density on microstructure and mechanical properties of TC4 alloy by selective laser melting[J]. Journal of Alloys and Compounds, 2023, 968: 171769.

    [3]

    DHIMAN S, CHINTHAPENTA V, BRANDT M, et al. Microstructure control in additively manufactured Ti-6Al-4V during high-power laser powder bed fusion[J]. Additive Manufacturing, 2024, 96: 104573.

    [4]

    DAI N W, ZHANG L C, ZHANG J X, et al. Corrosion behavior of selective laser melted Ti-6Al-4 V alloy in NaCl solution[J]. Corrosion Science, 2016, 102: 484 − 489.

    [5]

    ZHANG J, YANG P Z, YANG H O, et al. Effect of heat treatment on microstructure and properties of hybrid manufacturing TC4 alloy bonding zone[J]. Journal of Materials Research and Technology, 2025, 34: 1108 − 1119.

    [6]

    CHENG H X, LUO H, CHENG J, et al. Optimizing the corrosion resistance of additive manufacturing TC4 titanium alloy in proton exchange membrane water electrolysis anodic environment[J]. International Journal of Hydrogen Energy, 2024, 93: 753 − 769.

    [7]

    DENG T S, ZHONG X Y, ZHONG M, et al. Effect of scandium on microstructure and corrosion resistance of Ti64 alloy in NaCl solution[J]. Materials Characterization, 2023, 197: 112671.

    [8]

    LIAN Z W, XIN S W, GUO P, et al. Synergistic effect of Cr and Fe elements on stress corrosion fracture toughness of titanium alloy[J]. Metals and Materials International, 2024, 31: 1087 − 1095.

    [9]

    BOWER K, MURRAY S, REINHART A, et al. Corrosion resistance of selective laser melted Ti–6Al–4V alloy in salt fog environment[J]. Results in Materials, 2020, 8: 100122. doi: 10.1016/j.rinma.2020.100122

    [10] 王非凡, 谢聿铭, 吴会强, 等. 2219铝合金FSW和TIG焊接头力学与腐蚀行为[J]. 焊接学报, 2022, 43(6): 43 − 49. doi: 10.12073/j.hjxb.20220103001

    WANG Feifan, XIE Yuming, WU Huiqiang, et al. Mechanical performances and corrosion behaviors of friction stir welded and TIG welded 2219 aluminum alloy joints[J]. Transactions of the China Welding Institution, 2022, 43(6): 43 − 49. doi: 10.12073/j.hjxb.20220103001

    [11]

    MAHLOBO M G, CHIKOSHA L, OLUBAMBI P A. Study of the corrosion properties of powder rolled Ti-6Al-4V alloy applied in the biomedical implants[J]. Journal of Materials Research and Technology, 2022, 18: 3631 − 3639. doi: 10.1016/j.jmrt.2022.04.004

    [12]

    ZHOU X, XU D K, GENG S J, et al. Mechanical properties, corrosion behavior and cytotoxicity of Ti-6Al-4V alloy fabricated by laser metal deposition[J]. Materials Characterization, 2021, 179: 111302. doi: 10.1016/j.matchar.2021.111302

    [13]

    TAN B, CHEN W J, CAO T, et al. Effect of CeO2 content on the corrosion resistance of nanostructured Al2O3-10wt. %TiO2 ceramic coatings[J/OL]. China Welding, 2025, 33: http://chinawelding.hwi.com.cn/article/id/79102d41-4884-40db-922a-6d709e47ef22.

    [14] 苏允海, 杨太森, 戴志勇, 等. Inconel 625熔敷金属抗Cl腐蚀行为分析[J]. 焊接学报, 2021, 42(6): 64 − 70.

    SU Yunhai, YANG Taisen, DAI Zhiyong, et al. Analysis of Cl corrosion resistance of Inconel 625 deposited metal[J]. Journal of Materials Research and Technology, 2021, 42(6): 64 − 70.

图(7)  /  表(4)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  6
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-05
  • 网络出版日期:  2025-03-27
  • 刊出日期:  2025-04-24

目录

    /

    返回文章
    返回