高级检索

SLM制备块体Al0.5CoCrFeNi高熵合金的成形质量及微观组织

Forming Quality and Microstructure of Al0.5CoCrFeNi Bulk High-Entropy Alloy Fabricated by Selective Laser Melting

  • 摘要: 激光选区熔化(selective laser melting,SLM )是实现高性能高熵合金零部件快速制造的热点技术之一,然而在SLM成形过程中,多参数制造空间会直接影响材料的微观结构,进而影响高熵合金的性能.文中探究了SLM制备Al0.5CoCrFeNi块体高熵合金的多参数制造空间—致密度—微观结构—显微硬度的综合关系,为SLM制备多参数组合的高熵合金提供理论参考和技术支持.结果表明,SLM成形工艺参数为激光功率P = 100 W、扫描速度v = 1 500 mm/s、层间旋转角α = 67°及体积能量密度VED = 44.4 J/mm3时试样成形质量最好,内部孔隙度最低,为1.8%.较低或较高的VED对宏观成形质量均有负面影响,VED对相分布、晶粒形态和平均粒径均有影响:SLM成形的Al0.5CoCrFeNi块体高熵合金由FCC和BCC双相构成,随着VED值的增加,FCC相含量从99.73%增加到99.98%;晶粒以柱状晶为主,平均晶粒尺寸先减后增;低角度晶界呈现先增后减趋势,高角度晶界变化趋势相反;其显微硬度先降后升至最高244.3 HV,这一变化趋势与平均晶粒尺寸随VED变化的趋势符合Hall-Petch关系.

     

    Abstract: SLM is one of the key technologies for rapid manufacturing of high-performance high-entropy alloy components. However, in the SLM process, the multi-parameter manufacturing space directly affects the microstructure of the material, thereby influencing the performance of high-entropy alloys. This study explores the comprehensive relationship among the multi-parameter manufacturing space, density, microstructure, and microhardness of SLM-manufactured Al0.5CoCrFeNi bulk high-entropy alloy, providing theoretical references and a technical support for the SLM preparation of multi-parameter combination high-entropy alloys. The research results indicated that the optimal forming quality of the specimens was achieved with SLM process parameters of P = 100 W, v = 1500 mm/s, α = 67° and VED = 44.4 J/mm3, resulting in the lowest internal porosity, at 1.8%. Both lower and higher VED negatively impacted macroscopic forming quality. VED had a notable influence on phase distribution, grain morphology and average grain size. The SLM-manufactured Al0.5CoCrFeNi bulk high-entropy alloy consisted of FCC and BCC phases, with the FCC phase content increasing from 99.73% to 99.98% as VED increased. The columnar grains became predominant, with the average grain size initially increases and then decreases. Low-angle grain boundaries exhibited an initial increase followed by a decrease, while high-angle grain boundaries showed the opposite trend. The microhardness first decreased and then increased to 244.3 HV, This trend is consistent with the pattern of mean grain size variation with VED in accordance with the Hall-Petch relationship.

     

/

返回文章
返回