高级检索

基于改进卷积神经网络的管焊缝X射线图像缺陷识别方法

樊丁, 胡桉得, 黄健康, 徐振亚, 徐旭

樊丁, 胡桉得, 黄健康, 徐振亚, 徐旭. 基于改进卷积神经网络的管焊缝X射线图像缺陷识别方法[J]. 焊接学报, 2020, 41(1): 7-11. DOI: 10.12073/j.hjxb.20190703002
引用本文: 樊丁, 胡桉得, 黄健康, 徐振亚, 徐旭. 基于改进卷积神经网络的管焊缝X射线图像缺陷识别方法[J]. 焊接学报, 2020, 41(1): 7-11. DOI: 10.12073/j.hjxb.20190703002
FAN Ding, HU Ande, HUANG Jiankang, XU Zhenya, XU Xu. X-ray image defect recognition method for pipe weld based on improved convolutional neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(1): 7-11. DOI: 10.12073/j.hjxb.20190703002
Citation: FAN Ding, HU Ande, HUANG Jiankang, XU Zhenya, XU Xu. X-ray image defect recognition method for pipe weld based on improved convolutional neural network[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(1): 7-11. DOI: 10.12073/j.hjxb.20190703002

基于改进卷积神经网络的管焊缝X射线图像缺陷识别方法

基金项目: 国家自然科学基金资助项目(51775256)
详细信息
    作者简介:

    樊丁,1961年出生,教授,博士研究生导师;主要从事焊接方法与焊接物理、焊接智能控制及自动化、材料激光加工等方面的教学与科研工作;发表论文300余篇;Email:fand@lut.cn

  • 中图分类号: TG 409

X-ray image defect recognition method for pipe weld based on improved convolutional neural network

  • 摘要: 针对卷积神经网络(CNN)应用于焊缝探伤图像识别时,目标区域占比小,局部信息冗余,激活函数小于零时出现硬饱和区导致模型对输入变化较敏感、网络参数难以训练的问题,采用超像素分割算法(SLIC)和改进的ELU激活函数构建CNN模型进行焊缝探伤图像缺陷识别. 首先,在CNN模型中使用ELU激活函数,在缓解梯度消失时对输入噪声产生更好的鲁棒性,同时,利用SLIC算法对图像像素进行像素块处理的特点,增大焊缝探伤图像中感兴趣区域的占比,降低局部冗余信息,提高模型在训练过程中的特征提取能力. 通过对焊缝探伤图像感兴趣区域提取并与所述CNN模型进行对比试验. 结果表明,该方法在焊缝探伤图像特征提取、训练耗时及识别准确率方面较传统卷积神经网络有更好的表现.
    Abstract: When convolution neural network (CNN) is applied to weld flaw detection image recognition, the target area is small, the local information is redundant, and the hard saturation region of activation function is less than zero, which makes the model sensitive to input change and difficult to train the network parameters. The super pixel segmentation algorithm (SLIC) and the improved ELU activation function are used to construct CNN model for weld flaw detection image defect recognition. First, the ELU activation function is used in the CNN model to generate better robustness to the input noise when the response gradient disappears, At the same time, the SLIC algorithm is used to deal with the pixels of the image, which increases the proportion of the region of interest in the weld flaw detection image, reduces the local redundant information, and improves the feature extraction ability of the model in the training process. Through the extraction of the region of interest of weld flaw detection image and the establishment of the CNN model described in this paper, the results show that the proposed method has better performance than the traditional convolution neural network in feature extraction, training time and recognition accuracy of weld flaw detection image.
  • 在现代工业中,焊接已经成为一种重要的加工技术,焊接质量检测是保证焊接质量的重要手段[1-3]. 对于焊后焊缝表面成形质量检测,传统检测法是通过人工目测观察和测量来实现,检测结果依赖检测者的主观判断,难以满足现代化生产需要[4].

    与传统检测方法相比,直接视觉检测法是利用摄像机直接拍摄焊缝图像[5-6],根据焊缝在图像中的灰度分布,利用图像处理方法获得焊缝表面形态信息. 但由于环境光照干扰,检测结果有时并不准确.

    基于线激光视觉传感测量技术,利用三角测量原理,根据线激光条纹中的变形来获取焊缝形态信息[7-8]. 由于受环境光照、机械振动及传感器质量影响,焊缝激光条纹图像往往存在噪声,且主要集中在图像的高频部分. 常用的时域及频域去噪法通过保留焊缝图像低频分量与抑制高频分量来完成图像平滑,平滑后的图像减少了噪声干扰,但图像也会变模糊. 焊缝图像的高频分量不仅包含噪声,也包含焊缝轮廓的细节信息,通过抑制焊缝图像高频分量虽能达到降噪目的,但会丢失焊缝轮廓的一些细节信息,影响焊缝测量. 在此提出采用软硬阈值折衷法的小波阈值去噪法,在保留焊缝图像低频分量的同时,也对高频分量进行处理,消除噪声对焊缝成形测量的干扰,有效提高焊缝测量精度及可靠性.

    试验装置由摄像机、半导体线激光器、移动平台及工控机组成,如图1所示. 摄像机为300万像素工业相机,线激光器输出波长为650 nm. 摄像机和线激光器相对固定,根据三角测量原理,线激光器发出的光线垂直打在焊缝表面,利用摄像机对焊缝表面进行拍摄获取焊缝图像. 同时工作平台匀速移动,摄像机拍摄的图像通过数据线输入到工控机中,利用图像处理获取焊缝形态信息.

    图  1  线激光焊缝成形测量试验装置原理图
    Figure  1.  Testing schematic of weld forming measurement system based upon stripe laser

    焊缝成形视觉测量需要建立被测焊缝的世界坐标系与其图像坐标系之间的转换关系,摄像机图像坐标系与世界坐标系的关系表示为[9]

    $${{\textit{z}}_{\rm{c}}}\left[ {\begin{array}{*{20}{c}} u \\ v \\ 1 \end{array}} \right] = \omega \left[ {\begin{array}{*{20}{c}} {{x_{\rm{w}}}} \\ {{y_{\rm{w}}}} \\ {{{\textit{z}}_{\rm{w}}}} \\ 1 \end{array}} \right]$$ (1)
    $$\omega = \left[ {\begin{array}{*{20}{c}} {f/{d_x}}&0&{{u_0}}&0 \\ 0&{f/{d_y}}&{{v_0}}&0 \\ 0&0&1&0 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{R}}&{{T}} \\ {{{{0}}^T}}&{{1}} \end{array}} \right]$$ (2)

    式中:(u, v)为焊缝特征点的图像坐标;(xw, yw, zw)为特征点对应的世界坐标;zc为摄像机坐标系下对应点的纵坐标;f表示相机焦距;dxdy分别为像素点在成像平面坐标系中X轴和Y轴的物理尺寸;(u0, v0)为摄像机主点坐标;R为旋转矩阵;T为平移向量;ω为比例系数,可由式(2)计算获得.

    在标定过程中,由于图像存在径向畸变,因此需对图像做畸变矫正,畸变矫正模型表达式为

    $$\left[ {\begin{array}{*{20}{c}} {{x'}} \\ {{y'}} \end{array}} \right] = \left[ {k\left({x'^{2}} + {y'^{2}}\right) + 1} \right]\left[ {\begin{array}{*{20}{c}} x \\ y \end{array}} \right]$$ (3)

    式中:(x, y)为畸变矫正前特征点图像坐标;(x′, y′)为矫正后特征点对应图像坐标;k为畸变系数.

    试验采用锯齿靶标标定法,锯齿间距为10 mm,齿高为5 mm,齿顶与齿根夹角为90 º,齿数为4,图2为锯齿靶标示意图. 标定时X轴和Y轴保持不动,不断调整Zw的高度,从而获得一系列特征点的图像坐标和世界坐标,根据式(1)得到标定矩阵,建立被测焊缝的世界坐标系与其图像坐标系之间的转换关系.为测试焊缝成形测量系统的标定精度,试验选用0级量块中的10,20与30 mm量块,在测量高度不变的情况下对每个量块重复摆放测量10次,测量结果如表1所示.

    图  2  锯齿靶标
    Figure  2.  Saw-tooth calibration target
    表  1  不同规格量块高度测量结果
    Table  1.  Results of measurement in height with different gauge blocks
    量块标准值 h/mm平均值 H/mm标准偏差 δ/mm误差 Δδ/mm
    10 9.969 0.019 0.031
    20 19.951 0.014 0.049
    30 29.934 0.021 0.066
    下载: 导出CSV 
    | 显示表格

    表1分析可知,随着量块的测量值增加,测量误差也逐渐增大,原因是当量块测量值逐渐增加时,激光条纹在图像坐标系中逐渐上移而远离镜头中心,因此畸变也逐渐增大.

    小波阈值去噪法是对含噪焊缝图像通过条纹中心提取方法获取焊缝条纹中心,利用小波多尺度分解获得焊缝条纹中心的各层细节分量,在各层细节分量中设定阈值,根据阈值对各层细节分量进行相应的保留或收缩,再利用小波逆变换最终重构出去噪后的焊缝条纹中心.

    传统的小波阈值函数主要有硬阈值和软阈值,硬阈值函数表达式为[10-11]

    $${\tilde w_{j,k}} = \left\{ {\begin{array}{*{20}{l}} {{w_{j,k}},}&{\left| {{w_{j,k}}} \right| \geqslant \lambda } \\ {0,}&{\left| {{w_{j,k}}} \right| < \lambda } \end{array}} \right.$$ (4)

    软阈值函数表达式为

    $${\tilde w_{j,k}} = \left\{ {\begin{array}{*{20}{l}} {{\rm{sgn}}({w_{j,k}})\left(\left| {{w_{j,k}}} \right| - \lambda \right),}&{\left| {{w_{j,k}}} \right| \geqslant \lambda } \\ {0,}&{\left| {{w_{j,k}}} \right| < \lambda } \end{array}} \right.$$ (5)

    式中:wj,k为小波系数;${\tilde w_{j,k}}$为经阈值处理后的小波系数;λ为阈值,阈值的计算方法有全局阈值、启发式阈值和stein无偏似然估计等.

    硬阈值和软阈值去噪算法存在一些不足,硬阈值函数在λ处不连续,对于各层细节分量,经阈值处理后获得的小波系数会产生附加震荡;软阈值函数虽然连续,但当|wj,k|大于λ时,${\tilde w_{j,k}}$wj,k之间存在恒定偏差,影响焊缝条纹中心的真实性.为克服两种阈值函数的不足,提出采用软硬阈值折衷法对提取的焊缝条纹中心进行降噪处理,函数表达式为

    $${\tilde w_{j,k}} = \left\{ {\begin{array}{*{20}{l}} {{\rm{sgn}}({w_{j,k}})\left(\left| {{w_{j,k}}} \right| - a\lambda \right),}&{\left| {{w_{j,k}}} \right| \geqslant \lambda } \\ {0,}&{\left| {{w_{j,k}}} \right| < \lambda } \end{array}} \right.$$ (6)

    式中:a分别取0和1时,函数分别对应硬阈值函数和软阈值函数. 当0 < a < 1时,经阈值处理得到的小波系数介于硬阈值函数及软阈值函数之间. 经多次试验发现a = 0.1时去噪效果最佳.

    试验采用db4小波基函数对提取的焊缝条纹中心进行3层小波分解. 根据全局阈值,分别采用硬阈值法、软阈值法和软硬阈值折衷法对分解后获得的各层细节分量进行阈值降噪. 利用小波逆变换重构出降噪后的焊缝条纹中心. 图3为焊缝的线激光条纹图像,图4为3种阈值函数的去噪效果.

    图  3  焊缝线激光条纹图像
    Figure  3.  Laser stripes photo of weld seam
    图  4  3种阈值函数去噪效果
    Figure  4.  Denoising effect of three threshold functions. (a) extracted center of weld line laser stripe; (b) hard threshold denoising; (c) soft threshold denoising; (d) soft-hard threshold compromise denoising method

    焊缝条纹中心的去噪效果可以采用信噪比和均方根误差来衡量,设去噪前的信号为x(n),去噪后的信号为x′(n),信噪比表示为

    $$SNR = 10 \cdot {\lg}\left( {\frac{{\displaystyle\sum\limits_{n = 1}^N {{x^2}(n)} }}{{\displaystyle\sum\limits_{n = 1}^N {{{\left[ {x(n) - {x'}(n)} \right]}^2}} }}} \right)$$ (7)

    均方根误差表示为

    $$RMSE = \sqrt {\frac{1}{n} \cdot {{\sum\limits_{n = 1}^N {\left[ {x(n) - {x'}(n)} \right]} }^2}} $$ (8)

    表2为3种不同阈值函数处理后得到的信噪比和均方根误差.

    表  2  3种处理方法的信噪比和均方根误差比较
    Table  2.  Comparison of SNR and RMSE between three methods
    阈值函数信噪比 SNR(dB)均方根误差 RMSE (pixel)
    硬阈值 55.876 9 0.357 4
    软阈值 54.314 1 0.427 8
    软硬阈值折衷 56.187 2 0.344 8
    下载: 导出CSV 
    | 显示表格

    分析可知采用软硬阈值折衷法处理得到的信噪比最高,同时均方根误差最小. 对图5所示对接焊缝利用线激光进行扫描,扫描长度为150 mm,扫描速度为1 mm/s. 扫描后获得重构后的焊缝三维图像,根据对比发现经软硬阈值折衷法降噪处理后的焊缝图像保留了细节信息,且图像更加平滑.

    图  5  焊缝三维重构图
    Figure  5.  3D reconstruction figure of weld seam. (a) butt weld; (b) fillet weld; (c) weld 3D diagram after denoising with median filter; (d) weld 3D diagram after soft-hard threshold compromise denoising method

    为测试焊缝成形测量系统的可靠性,对图5中对接焊缝和角焊缝进行测量,分别采用软硬阈值折衷法和中值滤波对提取的焊缝激光条纹中心进行去噪处理,采用斜率截距法获得焊缝熔宽,连续测量10次取均值,表3为测量结果.

    分析数据可知,在对接焊缝中同一焊缝位置,经软硬阈值折衷法去噪和中值滤波去噪测量的焊缝熔宽与实际值对比,最小偏差分别为0.01和0.02 mm,最大偏差分别为0.05和0.14 mm;在角焊缝中同一焊缝位置,经软硬阈值折衷法去噪和中值滤波去噪测量的焊缝熔宽与实际值对比,最小偏差为0.01 mm,最大偏差分别为0.04和0.11 mm. 经软硬阈值折衷法去噪后测量的焊缝熔宽波动范围比普通去噪法处理后的波动范围更小,说明采用软硬阈值折衷法的小波阈值去噪能够有效提高焊缝外形尺寸的测量精度及测量可靠性.

    表  3  焊缝熔宽测量值对比(mm)
    Table  3.  Comparison of measured weld seam width
    序号对接焊缝角焊缝
    实际值中值滤波软硬阈值折衷法实际值中值滤波软硬阈值折衷法
    121.4521.4721.49510.8110.8210.828
    221.5121.55621.5210.8410.75610.83
    321.5121.6521.51910.8210.76310.833
    421.5321.78121.5810.8310.9410.82
    521.4721.44921.50110.8210.76310.835
    621.5221.55421.51810.8510.75410.828
    721.4321.54621.50810.7910.75710.814
    821.5321.54521.55410.8610.97310.82
    921.4921.55321.50510.8410.9510.829
    1021.4821.6221.4910.8610.74310.831
    平均值21.49221.57221.51910.83210.82110.826
    下载: 导出CSV 
    | 显示表格

    (1) 与传统的小波阈值去噪方法相比,软硬阈值折衷法的降噪效果与参数a有关,当0 < a < 1时,经阈值处理得到的小波系数介于硬阈值和软阈值之间,经多次试验发现a取0.1时去噪效果最佳.

    (2) 针对传统小波阈值去噪算法对含噪焊缝图像去噪性能的不足,提出软硬阈值折衷去噪法. 试验表明采用软硬阈值折衷法的去噪性能优于传统小波阈值去噪方法,能有效提高焊缝外形尺寸的测量精度及可靠性.

  • 图  1   ELU激活函数

    Figure  1.   ELU activation function

    图  2   SLIC算法迭代处理

    Figure  2.   SLIC algorithm iterative processing

    图  3   缺陷识别流程图

    Figure  3.   Defect identification flowchart

    图  4   改进卷积神经网络模型

    Figure  4.   Improved convolutional neural network model

    图  5   部分试验图像数据

    Figure  5.   Partial experimental image data

    图  6   迭代正确率及交叉熵损失

    Figure  6.   Iterative correct rate and cross entropy loss. (a) iterative accuracy rate; (b) iterative cross entropy loss

    表  1   模型构建方式

    Table  1   Model construction method

    CNN模型名称训练图像激活函数
    CNN-1未进行SLIC处理RELU
    CNN-2未进行SLIC处理ELU
    CNN-3进行SLIC处理ELU
    下载: 导出CSV

    表  2   各模型迭代耗时

    Table  2   Iteration time of each model

    CNN模型名称训练图像激活函数耗时减幅
    CNN-1未进行SLIC处理RELU0
    CNN-2未进行SLIC处理ELU1.07%
    CNN-3进行SLIC处理ELU12.87%
    下载: 导出CSV

    表  3   焊缝探伤图像识别结果表

    Table  3   Weld flaw detection image recognition result table

    测试样本CNN-1分类及识别结果CNN-2分类及识别结果CNN-3分类及识别结果
    1号无缺陷 (0.997,0.002,0.000,0.000) (0.991,0.000,0.001,0.008) (0.999,0.000,0.000,0.000)
    2号无缺陷 (0.999,0.000,0.000,0.000) (0.998,0.001,0.000,0.001) (0.999,0.000,0.000,0.000)
    1号气孔 (0.000,0.000,0.000,0.999) (0.000,0.000,0.000,0.999) (0.000,0.000,0.000,1.000)
    2号气孔 (0.000,0.000,0.000,0.999) (0.000,0.000,0.000,0.999) (0.000,0.000,0.000,0.999)
    1号未熔合 (0.000,0.500,0.499,0.000) (0.000,0.043,0.956,0.001) (0.000,0.005,0.902,0.091)
    2号未熔合 (0.000,0.138,0.797,0.064) (0.000,0.007,0.981,0.011) (0.000,0.001,0.549,0.448)
    1号未焊透 (0.000,0.859,0.140,0.000) (0.000,0.936,0.063,0.000) (0.000,0.968,0.031,0.000)
    2号未焊透 (0.000,0.957,0.042,0.000) (0.000,0.907,0.092,0.000) (0.400,0.598,0.001,0.000)
    下载: 导出CSV
  • [1] 张志芬, 杨哲, 任文静, 等. 电弧光谱深度挖掘下的铝合金焊接过程状态检测[J]. 焊接学报, 2019, 40(1): 19 − 25.

    Zhang Zhifen, Yang Zhe, Ren Wenjing, et al. Condition detection in Al alloy welding process based on deep mining of arc spectrum[J]. Transactions of the China Welding Institution, 2019, 40(1): 19 − 25.

    [2]

    Min Xiangjun. The development and design of the repair welding procedure of the thick wall duplex stainless steel piping[J]. China Welding, 2017, 26(1): 60 − 64.

    [3] 孙怡, 孙洪雨, 白鹏, 等. X射线焊缝图像中缺陷的实时检测方法[J]. 焊接学报, 2004, 25(2): 115 − 118. doi: 10.3321/j.issn:0253-360X.2004.02.029

    Sun Yi, Song Hongyu, Bai Peng, et al. Real-time automatic detection of weld defects in X-ray images[J]. Transactions of the China Welding Institution, 2004, 25(2): 115 − 118. doi: 10.3321/j.issn:0253-360X.2004.02.029

    [4]

    Yang Zhenzhen, Kuang Nan, Fan Lu, et al. Review of image classification algorithms based on convolutional neural networks[J]. Journal of Signal Processing, 2018, 34(12): 84 − 99.

    [5] 周飞燕, 金林鹏, 董军. 卷积神经网络综述[J]. 计算机学报, 2017, 40(6): 1229 − 1251. doi: 10.11897/SP.J.1016.2017.01229

    Zhou Feiyan, Jin Linpeng, Dong Jun. Review of image classification algorithms based on convolutional neural networks[J]. Chinese Journal of Computers, 2017, 40(6): 1229 − 1251. doi: 10.11897/SP.J.1016.2017.01229

    [6]

    Boureau Y, Roux N L, Bach F, et al. Ask the locals: multi-way local pooling for image recognition[C]// IEEE International Conference on Computer Vision. IEEE, 2011: 2651-2658.

    [7]

    Wu X, He R, Sun Z, et al. A light CNN for deep face representation with noisy labels[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(11): 1 − 11. doi: 10.1109/TIFS.2018.2879134

    [8]

    Gu J, Wang Z, Kuen J, et al. Recent advances in convolutional neural networks[J]. Computer Science, 2018, 77: 354 − 377.

    [9]

    Achanta R, Shaji A, Smith K, et al. SLIC superpixels comparedto state of the art superpixel methods[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2012, 34(11): 2274 − 2282.

    [10]

    Singh R, Om H. Newborn face recognition using deep convolutional neural network[J]. Multimedia Tools & Applications, 2017, 76(18): 1 − 11.

    [11]

    Mery D, Riffo V, Zscherpel U, et al. The database of X-ray images for nondestructive testing[J]. Journal of Nondestructive Evaluation, 2015, 34(4): 1 − 12.

  • 期刊类型引用(3)

    1. 田瑞,江哲,刘俊,刘伟清,池元清,张永康. 纳米改性Al-Zn-Mg-Cu合金电弧熔丝增材成形工艺及组织和性能. 焊接学报. 2024(08): 110-120 . 本站查看
    2. 郭克星. 铝合金激光焊接技术研究进展. 热处理. 2024(06): 1-7 . 百度学术
    3. 王龙权,尹天天,张岩,宋闽,张基隆,曲畅. 7xxx高强铝合金熔化焊研究进展. 焊接. 2023(08): 44-54 . 百度学术

    其他类型引用(7)

图(6)  /  表(3)
计量
  • 文章访问数:  721
  • HTML全文浏览量:  26
  • PDF下载量:  77
  • 被引次数: 10
出版历程
  • 收稿日期:  2019-07-02
  • 网络出版日期:  2020-07-12
  • 刊出日期:  2019-12-31

目录

/

返回文章
返回