高级检索

船用耐蚀钢DH36光纤激光-MIG复合焊接接头组织和性能

高艳, 崔丽, 常耀卿, 顾长石, 贺定勇

高艳, 崔丽, 常耀卿, 顾长石, 贺定勇. 船用耐蚀钢DH36光纤激光-MIG复合焊接接头组织和性能[J]. 焊接学报. DOI: 10.12073/j.hjxb.20180320001
引用本文: 高艳, 崔丽, 常耀卿, 顾长石, 贺定勇. 船用耐蚀钢DH36光纤激光-MIG复合焊接接头组织和性能[J]. 焊接学报. DOI: 10.12073/j.hjxb.20180320001

船用耐蚀钢DH36光纤激光-MIG复合焊接接头组织和性能

基金项目: 国家自然科学基金资助项目(51475006)
详细信息
    作者简介:

    高 艳,女,1991年出生,硕士研究生. 主要从事中厚板耐蚀钢焊接接头组织及性能研究,已发表论文3篇. Email:18701518026@163.com

    通讯作者:

    崔 丽,女,1972年出生,博士,教授,博士生导师. 主要从事轻合金激光焊接方面的科研和教学工作. 发表论文70余篇. Email:cuili@bjut.edu.cn

  • 中图分类号: TG 456.7

  • 摘要: 为探索12 mm厚DH36船用耐蚀钢对接用光纤激光-MIG复合焊接工艺,分析了四种不同送丝速度对接头成形、微观组织、拉伸性能及腐蚀性能的影响. 结果表明,在送丝速度为8.5 m/min时可获得成形优良的接头,随着送丝速度的增加,电弧区和激光区焊缝的熔宽均增加. 焊缝区主要由针状铁素体、先共析铁素体和一定量的贝氏体组成,送丝速度对针状铁素体的形态和数量有显著的影响. 增加送丝速度对接头抗拉强度的影响不大,但减小了延伸率,接头延伸率最高达16.5%. 接头极化曲线测试表明,当送丝速度为7.5 m/min时,自腐蚀电流密度最小,腐蚀倾向最低.
  • 图  1   不同送丝速度下接头的横截面成形

    Figure  1.   Cross-section of joints at different filler wire speeds

    图  2   不同送丝速度下接头的熔宽、余高和电弧区熔深变化

    Figure  2.   Weld bead dimensions at different filler wire speeds

    图  3   DH36钢的组织形貌

    Figure  3.   Microstructures of DH36 steels

    图  4   不同送丝速度焊缝的微观组织

    Figure  4.   Microstructures of the welds at different filler wire speeds

    图  5   不同送丝速度下接头HAZ的组织形貌

    Figure  5.   Microstructures of heat affected zone at different filler wire speeds

    图  6   不同送丝速度下接头的拉伸性能

    Figure  6.   Tensile properties of the welded joints at different filler wire speeds

    图  7   不同送丝速度下接头的显微硬度

    Figure  7.   Micro-hardness of the welded joints at different filler wire speeds

    图  8   不同送丝速度下接头的极化曲线

    Figure  8.   Polarization curves of the welded joints at different filler wire speeds

    表  1   DH36钢及焊丝的化学成分(质量分数,%)

    Table  1   Chemical compositions of experiment steel and filler wire

    CSiMnPSAlTiSbCuNiCr
    母材0.0980.281.080.0110.0020.0250.0140.0820.024 10.247
    焊丝0.0610.471.450.0100.0020.0220.0120.0810.024 20.200
    下载: 导出CSV

    表  2   不同送丝速度下焊缝电化学参数拟合结果

    Table  2   Fitting results of electrochemical parameters of welded joints at different filler wire speeds

    送丝速度v/(m∙min−1)自腐蚀电位ESCE/V自腐蚀电流logI(μA∙cm−2)
    7.0-0.499570.7946
    7.5-0.480242.6580
    8.0-0.491451.2861
    8.5-0.491353.7032
    下载: 导出CSV
  • [1]

    Sun F, Li X, Zhang F. Corrosion mechanism of corrosion-resistant steel developed for bottom plate of cargo oil tanks[J]. Acta Metallurgica Sinica (English Letters), 2013, 26: 257 − 264. doi: 10.1007/s40195-012-0231-0

    [2] 张国宏, 成 林, 李 钰, 等. 海洋耐蚀钢的国内外进展[J]. 中国材料进展, 2014, 33(7): 426 − 435.

    Zhang Guohong, Cheng Li, Li Yu, et al. Process of corrosion resistant steel at home and abroad[J]. Materials China, 2014, 33(7): 426 − 435.

    [3]

    Ito M, Kaneko M, Nishimura S, et al. Development of corrosion resistant steel for bottom plates of crude oil tanks and onboard evaluation results[C]//Proceedings of the ASME 31st International Conference on Ocean, Offshore and Arctic Engineering. Brazil: ASME, 2012: 223−228.

    [4] 顾长石, 邱盛兴, 闫 璐, 等. 基于IMO标准的船用耐蚀钢研究综述[J]. 船舶工程, 2015, 37(10): 1 − 20.

    Gu Changshi, Qiu Shengxing, Yan Lu, et al. Research summary of marine corrosion resistant steel based on IMO standard[J]. Ship Engineering, 2015, 37(10): 1 − 20.

    [5] 柳 伟, 樊学华, 李少飞, 等. 油轮舱CO2-O2-H2S-SO2湿气环境中低合金钢的腐蚀行为[J]. 北京科技大学学报, 2011, 33(1): 33 − 39. doi: 10.3969/j.issn.1008-2689.2011.01.006

    Liu Wei, Fan Xuehua, Li Shaofei, et al. Corrosion behavior of low alloy steels in a CO2-O2-H2S-SO2 wet gas environment of crude oil tanks[J]. Journal of University of Science and Technology Beijing, 2011, 33(1): 33 − 39. doi: 10.3969/j.issn.1008-2689.2011.01.006

    [6] 罗小兵, 柴 锋, 苏 航, 等. 含H2S干湿交替环境下船用耐蚀钢研究[J]. 钢铁研究学报, 2013, 25(8): 51 − 53.

    Luo Xiaobing, Chai Feng, Su Hang, et al. Marine corrosion resistant steel research under dry-wet alternating environment with H2S[J]. Journal of Iron and Steel Research, 2013, 25(8): 51 − 53.

    [7] 梁金明, 唐 荻, 武会宾, 等. 基于IMO标准的E36级低合金船板钢货油舱上甲板环境全周期腐蚀行为与机理[J]. 材料研究学报, 2014, 28(6): 433 − 442. doi: 10.11901/1005.3093.2014.106

    Liang Jinming, Tang Di, Wu Huibin, et al. Cyclic Corrosion Behavior of E36 Low-alloy Steel in a Simulated Cargo Oil Tank Upper Deck Environment Corresponding to IMO Standard[J]. Chinese Journal of Materials Research, 2014, 28(6): 433 − 442. doi: 10.11901/1005.3093.2014.106

    [8] 陶乃旺, 黄淑珍, 黄宏钢. IMO油船货油舱涂层及耐蚀钢试验方法及性能要求[J]. 防腐涂料与涂装, 2011, 26(10): 23 − 25.

    Tao Naiwang, Huang Shuzhen, Huang Honggang. Test methods and performance requirements for coating and corrosion resistant steel for cargo tank[J]. Anticorrosive coatings and coating, 2011, 26(10): 23 − 25.

    [9] 冯向阳, 齐彦昌, 彭 云, 等. 货油舱用耐蚀钢焊接接头的耐腐蚀性能[J]. 钢铁研究学报, 2012, 24(3): 44 − 49.

    Feng Xiangyang, Qi Yanchang, Peng Yun, et al. Corrosion resistance of corrosion resistant steel welded joints for cargo tanks[J]. Journal of Iron and Steel Research, 2012, 24(3): 44 − 49.

    [10] 杨建祎, 许 静, 曹建平, 等. 原油船货油舱用耐蚀钢及焊接接头的腐蚀性能研究[J]. 腐蚀与防护, 2012, 33(2): 39 − 43.

    Yang Jianyi, Xu Jing, Cao Jianping, et al. Corrosion behavior of corrosion resistant steel and welded joints for cargo tank of crude oil Ship[J]. Corrosion and Protection, 2012, 33(2): 39 − 43.

    [11]

    Wei J S, Yan-Chang Q I, Tian Z L, et al. Corrosion Behavior of Welded Joints for Cargo Oil Tanks of Crude Oil Carrie[J]. Journal of Iron and Steel Research International, 2016, 23(9): 955 − 962. doi: 10.1016/S1006-706X(16)30144-3

    [12] 崔 丽, 高 艳, 顾长石, 等. 微量元素Cr对船用耐蚀钢焊接接头组织和性能的影响[J]. 北京工业大学学报, 2018, 44(6): 953 − 960. doi: 10.11936/bjutxb2017060021

    Cui Li, Gao Yan, Gu Changshi, et al. Effect of trace element Cr on microstructures and properties of welded joints of marine corrosion resisting steels[J]. Journal of Beijing University of Technology, 2018, 44(6): 953 − 960. doi: 10.11936/bjutxb2017060021

    [13] 雷正龙, 陈彦宾, 李俐群, 等. CO2激光-MIG复合焊接射滴过渡的熔滴特性[J]. 应用激光, 2004, 24(6): 361 − 364. doi: 10.3969/j.issn.1000-372X.2004.06.011

    Lei Zhenglong, Chen Yanbin, Li Liqun, et al. Characteristics of droplet transfer in CO2 laser-MIG hybrid welding with projected mode[J]. Applied Laser, 2004, 24(6): 361 − 364. doi: 10.3969/j.issn.1000-372X.2004.06.011

    [14]

    Chang Y F, Lei Z, Wang X Y, et al. Characteristic of laser-MIG hybrid welding with filling additional cold wire for aluminum alloy[J]. China Welding, 2018, 27(3): 35 − 41.

    [15]

    Li X Y. Study on the Progress of Welding Science and Technology in China[J]. Journal of Mechanical Engineering, 2012, 48(6): 19 − 31. doi: 10.3901/JME.2012.06.019

    [16] 刘巨峰. 厚板碳钢激光-MAG复合焊接工艺研究及接头组织性能分析[D]. 华中科技大学, 武汉, 2015.
    [17]

    Liu F D, Zhang Hong, Wang Y Q, et al. Influence of area energy for welding sea and droplet transfer on hybrid laser-arc welding[J]. Journal of Mechanical Engineering, 2012, 48(14): 84 − 90. doi: 10.3901/JME.2012.14.084

    [18] 杜则裕, 李亚江, 邹增大. 焊接科学基础[M]. 北京: 机械工业出版社, 2012.
    [19] 常丽艳, 宋西平, 张 敏, 等. 基于原位SEM的激光-MIG复合焊接7075-T6铝合金疲劳裂纹扩展行为[J]. 焊接学报, 2016, 37(5): 85 − 88.

    Chang Liyan, Song Xiping, Zhang Min, et al. In situ SEM based fatigue crack propagation behavior of hybrid laser welded 7075-T6[J]. Transactions of the china welding institution, 2016, 37(5): 85 − 88.

    [20]

    Zhang M, Wang X, Zhu G. Effect of laser welding process parameters on microstructure and mechanical properties on butt joint of new hot-rolled nano-scale precipitation-strengthened steel[J]. Acta Metallurgica Sinica (English Letters), 2014, 27: 521 − 529. doi: 10.1007/s40195-014-0081-z

    [21] 黄安国, 李志远, 余圣甫, 等. 低合金钢焊缝金属的腐蚀行为[J]. 焊接学报, 2005, 26(11): 30 − 34. doi: 10.3321/j.issn:0253-360X.2005.11.009

    Huang Anguo, Li Zhiyuan, Yu Shengfu, et al. Corrosion behavior of weld metal of low alloy steel[J]. Transactions of the china welding institution, 2005, 26(11): 30 − 34. doi: 10.3321/j.issn:0253-360X.2005.11.009

  • 期刊类型引用(3)

    1. 贾旭,胡利方,李子昊,郑植,刘伟,张鹏. 基于阳极键合玻璃与铜的钎焊连接机理研究及其力学性能分析. 机械工程学报. 2024(02): 140-149 . 百度学术
    2. 王美荣,陈敏,蒋嘉豪,宋晓国,唐冬雁,曹健. 激光表面毛化对Ti/K9玻璃扩散焊接头性能的影响. 机械工程学报. 2023(14): 130-137 . 百度学术
    3. 司晓庆,李淳,郑庆伟,亓钧雷,冯吉才,曹健. Ag-CuO-Al_2O_3复合钎料空气反应钎焊SOFC及服役性能. 焊接学报. 2020(05): 1-6+97 . 本站查看

    其他类型引用(4)

图(8)  /  表(2)
计量
  • 文章访问数:  481
  • HTML全文浏览量:  145
  • PDF下载量:  94
  • 被引次数: 7
出版历程
  • 收稿日期:  2008-03-11
  • 网络出版日期:  2020-07-12

目录

    /

    返回文章
    返回