高级检索

Cu-Al异种金属超声焊接过程模拟

李欢,曹彪,杨景卫,崔晓宇

李欢,曹彪,杨景卫,崔晓宇. Cu-Al异种金属超声焊接过程模拟[J]. 焊接学报, 2017, 38(8): 5-9. DOI: 10.12073/j.hjxb.20150908002
引用本文: 李欢,曹彪,杨景卫,崔晓宇. Cu-Al异种金属超声焊接过程模拟[J]. 焊接学报, 2017, 38(8): 5-9. DOI: 10.12073/j.hjxb.20150908002
LI Huan, CAO Biao, YANG Jingwei, CUI Xiaoyu. Modeling of ultrasonic metal welding of Cu-Al joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(8): 5-9. DOI: 10.12073/j.hjxb.20150908002
Citation: LI Huan, CAO Biao, YANG Jingwei, CUI Xiaoyu. Modeling of ultrasonic metal welding of Cu-Al joints[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2017, 38(8): 5-9. DOI: 10.12073/j.hjxb.20150908002

Cu-Al异种金属超声焊接过程模拟

Modeling of ultrasonic metal welding of Cu-Al joints

  • 摘要: 利用有限元方法建立了Cu-Al超声焊三维热—力耦合模型. 热源包括摩擦热和塑性变形热,其热流密度与焊接不同阶段材料的振幅相关. 焊接过程超声变软影响温度场分布、应力、应变场和齿的嵌入,模拟合理考虑了铜、铝超声变软的数学模型. 模拟结果表明,铜和铝的块体温度均低于熔点,最高温度出现在焊头与铜板的接触面中心;Cu-Al连接界面最高温度出现在焊接区域中心处. 同时也模拟了齿的嵌入,焊接过程中焊头齿完全嵌入铜表面,但底座齿并未完全嵌入铝中. 与热电偶测温和焊接截面形貌对比验证表明,模拟结果与实际基本吻合,较好地模拟了超声变软、热和力三者之间的作用.
    Abstract: A 3-D thermal-mechanical coupled finite element model of ultrasonic metal welding of dissimilar alloys is developed. The friction heat flux and the deformation heat flux are related to different level of coupon’s vibration amplitude. The effects of ultrasonic softening on temperature distribution, stress distribution and tool indentation depths are included in the analysis of the welding process. The results show that the bulk temperature is lower than the melting temperature of the metals, the maximum temperature occurred at the center of the contact interface between the sonotrode tip and the upper copper specimen and the peak level of the welding interface temperature occurred at the center area. It is also shown that the sonotrode tip completely sinks into copper in welding, while the anvil tip’s indentation depths do not reach its maximum. The proposed model is validated and verified by comparing with welding crosssection and a point temperature using experimental physical test. The presented model is capable of predicting and explaining the relationship between ultrasound soften, mechanical field and thermal field during welding process.
  • [1] 董丰波, 陈文华, 宿国友, 等. 母材相对位置对搅拌摩擦焊接铝/铜异种金属接头性能的影响[J]. 焊接学报, 2011, 32(10): 85-88. Dong Fengbo, Chen Wenhua, Su Guoyou,etal. Effect of base metal relative positions on properties of Al/Cu FSW joint[J]. Transactions of the China Welding Institution, 2011, 32(10): 85-88[2] 吴小伟, 沈以赴, 李 博, 等. 铝-铜搅拌摩擦焊搭接焊缝共晶组织形成与抑制[J]. 焊接学报, 2014, 35(1): 87-90. Wu Xiaowei, Shen Yifu, Li Bo,etal. Formation and inhibition of eutectics in Al /Cu dissimilar metal lap joint[J]. Transactions of the China Welding Institution, 2014, 35(1): 87-90.[3] Yang J, Cao B, He X. Microstructure evolution and mechanical properties of Cu-Al joints by ultrasonic welding[J]. Science and Technology of Welding and Joining, 2014, 19(6): 500-504.[4] 李 东, 赵杨洋, 张延松. 焊接能量对铝/铜超声波焊接接头纤维组织的影响[J]. 焊接学报, 2014, 35(2): 47-50. Li Dong, Zhao Yangyang, Zhang Yansong. Effect of welding energy on microstructures of the Al/Cu joints obtained by ultrasonic welding[J]. Transactions of the China Welding Institution, 2014, 35(2): 47-50.[5] Hazlett T H, Ambekar S M. Additional studies on interface temperatures and bonding mechanisms of ultrasonic welds[J]. Welding Research Supplement, 1970, 49(5): 196-200.[6] Kim W, Argento A, Grima A,etal. Thermo-mechanical analysis of frictional heating in ultrasonic spot welding of aluminium plates[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2011, 225(7): 1093-1103.[7] Jedrasiak P, Shercliff H, Chen Y. Modeling of the thermal field in dissimilar alloy ultrasonic welding[J]. Journal of Materials Engineering and Performance, 2015, 24(2): 799-807.[8] Senouci A, Zaidi H, Frene J. Damage of surfaces in sliding electrical contact copper/steel[J]. Applied Surface Science, 1999, 144(1): 287-291.[9] Chao Y, Qi X, Tang W. Heat transfer in friction stir welding-experimental and numerical studies[J]. Journal of Manufacturing Science and Engineering, 2003, 125(1): 138-145.[10] Yadav S. Thermomechanical analysis of an ultrasonic rapid manufacturing (URM) system[J]. Journal of Manufacturing Process, 2005, 7(2): 153-161.[11] Siddiq A, Ghassemieh E. Thermomechanical analyses of ultrasonic welding process using thermal and acoustic softening effects[J]. Mechanics of Materials, 2008, 40(12): 982-1000.[12] Hung J, Tsai Y, Hung C. Friction effect of ultrasonic-vibration on upsetting[J]. Ultrasonics, 2007, 46(3): 277-284.[13] Huang H, Chang B, Du D. Effect of superimposed ultrasound on mechanical properties of copper[J]. Materials Science and Technology, 2011, 27(7): 1117-1122.
  • 期刊类型引用(9)

    1. 习文顺,任鑫焱,张金元,郭峰,吴圣川,李忠文,韩晓辉. 高速列车TC4钛合金焊接构架强度及寿命评估. 焊接学报. 2022(05): 29-35+115 . 本站查看
    2. 王微,吴鹏,李振亚. TC4合金与碳纤维增强ZrB_2-SiC陶瓷钎焊接头的微观结构与力学性能. 宇航材料工艺. 2021(01): 42-49 . 百度学术
    3. 鲁明远,韩保红,赫万恒,赵忠民. TiB_2基陶瓷/42CrMo合金层状梯度材料力学测试与结构设计. 焊接学报. 2021(09): 42-48+73+99 . 本站查看
    4. 魏平,蔡颖军,徐锐,王微. ZrB_2-SiC/Inconel 600钎焊接头界面结构与反应机理. 材料热处理学报. 2020(02): 159-165 . 百度学术
    5. 刘多,李星仪,赵可汗,宋延宇,钟素娟,宋晓国. CNTs对TC4与C/C复合材料钎焊接头组织及力学性能的影响. 焊接学报. 2020(04): 1-5+97 . 本站查看
    6. 黄鹏,朱冬冬,王刚,董多,王晓红. TiZrHfNbMo高熵合金与钛基复合材料钎焊接头组织及力学性能. 航空材料学报. 2020(04): 52-61 . 百度学术
    7. 张宇昆,陈继春,张劲松. 碳化硅复合材料与碳钢钎焊接头的抗剪强度及微观结构. 焊接学报. 2020(07): 78-82+101 . 本站查看
    8. 李淳,郑祖金,亓钧雷,冯吉才,曹健. AgCu+SiC复合钎料中SiC含量对Al_2O_3/TC4接头组织和性能的影响. 焊接学报. 2019(12): 11-16+161 . 本站查看
    9. 黄晓猛,齐岳峰,张国清,陈晓宇,郭菲菲. Al_2O_3陶瓷活性连接用AgCuInTi合金钎料性能. 焊接. 2019(12): 46-49+68 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  1666
  • HTML全文浏览量:  76
  • PDF下载量:  1266
  • 被引次数: 13
出版历程
  • 收稿日期:  2015-09-07

目录

    /

    返回文章
    返回