高级检索

元器件镀金引脚焊点开裂失效分析与控制

曹瑞, 吴亚宁, 倪晓亮, 王智彬, 王旭

曹瑞, 吴亚宁, 倪晓亮, 王智彬, 王旭. 元器件镀金引脚焊点开裂失效分析与控制[J]. 焊接学报, 2020, 41(7): 83-90. DOI: 10.12073/j.hjxb.20200319004
引用本文: 曹瑞, 吴亚宁, 倪晓亮, 王智彬, 王旭. 元器件镀金引脚焊点开裂失效分析与控制[J]. 焊接学报, 2020, 41(7): 83-90. DOI: 10.12073/j.hjxb.20200319004
CAO Rui, WU Yaning, NI Xiaoliang, WANG Zhibin, WANG Xu. Failure analysis and control of gold-plated lead solder joint cracks[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(7): 83-90. DOI: 10.12073/j.hjxb.20200319004
Citation: CAO Rui, WU Yaning, NI Xiaoliang, WANG Zhibin, WANG Xu. Failure analysis and control of gold-plated lead solder joint cracks[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2020, 41(7): 83-90. DOI: 10.12073/j.hjxb.20200319004

元器件镀金引脚焊点开裂失效分析与控制

详细信息
    作者简介:

    曹瑞,1990年出生,博士,工程师;主要从事宇航元器件可靠性分析与失效分析工作;Email:caorui0306@163.com.

  • 中图分类号: TG 454

Failure analysis and control of gold-plated lead solder joint cracks

  • 摘要: 宇航元器件镀金引脚钎焊前,需对焊接位置进行去金搪铅锡处理,避免焊接界面生成脆性金锡化合物,防止在使用时受外力作用而发生焊点“金脆”开裂.文中针对某宇航型号所用霍尔元件镀金引脚的焊点经历环境试验后脱落的问题,对相关镀金引脚焊点的形貌、金相与界面结构进行分析. 结果表明,元件引脚焊接位置已进行去金处理,但其焊接位置末端局部去金不彻底,焊点界面局部区域生成脆性金锡化合物,导致焊点前端生成裂纹源;经历宇航级温度循环或外力冲击考核试验时,因裂纹前端存在应力集中,导致裂纹持续扩展并发生焊点开裂脱落失效.确保镀金引线焊接位置去金质量并严控钎焊位置,避免在焊点内局部区域生成脆性金锡化合物,对提升镀金引脚焊点可靠应用具有重要意义.
    Abstract: After experiencing the mechanical and thermal environment test, one kind of electronic assembled Hall element experienced partial function failure due to the gold-plated pin solder joint cracking. Re-examination results showed that part of the Hall element pin solder joints also suffered partial cracking before environmental assessment tests. Due to the small assembly space of the component, it is difficult to effectively check the solder joint status after electrical installation. Therefore, analysis based on the cause of solder joint failure and targeted improvements are of great significance for improving the reliability of the spacecraft. The failure reasons were analyzed by observation of cracking morphology, metallographic testing and analysis of chemical composition. When the component pin welding position is not completely gold removed, brittle Au-Sn intermetallic compound (IMC) was observer along the cracked welding interface, which led to the generation of cracking source. Due to the stress concentration at the crack front, the crack expansion continued and caused solder joints failure under the effect of temperature alternating or external force. Ensuring the de-gold quality at soldering position and controlling the soldering position are of great significance for improving the reliability of the solder joints at the gold-plated leads.
  • 图  1   霍尔元件引脚开裂焊点形貌

    Figure  1.   Morphology of cracked Hall element lead solder joints. (a) No.23 sample; (b) No.160 sample

    图  2   失效焊点引脚开裂面焊接界面金相形貌

    Figure  2.   Metallographic morphology of the welding interface on the cracked solder joint

    图  3   23号样品开裂焊点金相形貌

    Figure  3.   Metallographic morphology of No.23 sample cracked solder joint. (a) low-magnification; (b) the front interface; (c) lead surface

    图  4   160号样品开裂焊点金相形貌

    Figure  4.   Metallographic morphology of No.160 sample cracked solder joint. (a) low-magnification; (b) the front interface; (c) the unsoldered side of the lead

    图  5   失效焊点引脚侧焊接界面SEM形貌

    Figure  5.   SEM morphology of failed solder joint on lead side

    图  6   23号霍尔元件开裂焊点前端SEM形貌

    Figure  6.   SEM morphology of No.23 Hall cracked solder joint. (a) low magnification; (b) the front interface; (c) lead surface; (d) end of the crack

    图  7   160号霍尔元件开裂焊点前端SEM形貌

    Figure  7.   SEM morphology of No.160 Hall cracked solder joint. (a) SEM and element distribution map of solder joint; (b) cracked interface and (d) crack end

    图  8   19号样品未开裂焊点外观与金相形貌.

    Figure  8.   Appearance and metallographic morphology of No.19 Hall uncracked solder joint. (a) solder joint appearance; metallographic morphology of: (b) low-magnification; (c) the front; (d) solder interface

    图  9   氩离子刻蚀后焊接界面形貌与AES谱图

    Figure  9.   SEM morphology and AES spectrum of welding interface after argon ion etching. (a) interface SEM after ion etching; (b) AES of P1;(c) AES of P2

    表  1   失效焊点引脚表面不同区域EDS分析结果(质量分数,%/原子分数,%)

    Table  1   EDS analysis results in areas of the failed lead solder joint interface

    分析位置NiSnPbAu
    谱图1100/100
    谱图253.4/65.546.6/34.5
    谱图368.4/78.231.6/21.8
    谱图468.4/79.029.0/19.22.6/1.8
    下载: 导出CSV

    表  2   23号霍尔元件开裂焊点前端不同区域EDS分析结果(质量分数,%/原子分数,%)

    Table  2   EDS analysis results of No.23 Hall cracked solder joint

    分析位置SnPbAuAg
    谱图197.5/98.52.5/1.5
    谱图211.1/17.985.3/78.63.6/3.5
    谱图366.5/77.221.4/14.312.1/8.5
    谱图462.1/73.137.9/26.9
    谱图553.5/65.646.5/34.4
    谱图668.3/78.33.3/2.228.4/19.5
    谱图777.9/84.217.4/10.80.9/0.63.8/4.4
    下载: 导出CSV

    表  3   160号霍尔元件开裂焊点前端不同区域EDS分析结果(质量分数,%/原子分数,%)

    Table  3   EDS analysis results of No.160 Hall cracked solder joint

    分析位置NiSnPbAu
    谱图1 100/100
    谱图2 6.8/19.2 3.8/5.3 89.4/75.5
    谱图3 2.3/5.6 51.9/61.6 45.8/32.8
    谱图4 29.5/50.1 43.9/36.9 18.8/9.0 7.8/4.0
    谱图5 16.0/31.7 49.3/48.5 26.5/14.9 8.2/4.9
    谱图6 68.2/78.9 30.5/20.2 1.3/0.9
    下载: 导出CSV

    表  4   19号霍尔元件未开裂焊点前端不同区域EDS分析结果(质量分数,%/原子分数,%)

    Table  4   EDS analysis results of No.19 Hall uncracked solder joint

    分析位置NiSnPbAu
    谱图125.8/43.850.0/44.521.3/10.32.9/1.4
    谱图273.5/83.725.0/15.31.5/1.0
    谱图764.3/76.934.4/22.21.3/0.9
    下载: 导出CSV
  • [1] 杨丹, 恩云飞, 黄云. 电子元器件的贮存可靠性及评价技术[J]. 电子元件与材料, 2005, 24(7): 61 − 64.

    Yang Dan, En Yunfei, Huang Yun. Electronic components storage reliability and evaluation technology[J]. Electronic Components & Materials, 2005, 24(7): 61 − 64.

    [2] 袁海玉. ENIG镀层质量对软钎焊点的可靠性的影响[J]. 电子产品可靠性与环境试验, 2017, 35(zl): 108 − 113.

    Yuan Haiyu. Influence of ENIG coating quality on the reliability of soldered joint[J]. Electronic Product Reliability and Environmental Testing, 2017, 35(zl): 108 − 113.

    [3] 孙晓伟, 程明生, 陈该青. Sn-Pb焊点金脆失效行为研究进展评述[J]. 电子工艺技术, 2017, 38(6): 315 − 318.

    Sun Xiaowei, Cheng Mingsheng, Chen Gaiqing. Review of research progress on gold embrittlement failure behavior of SnPb solder joints[J]. Electronics Process Technology, 2017, 38(6): 315 − 318.

    [4] 尹娜, 曲文卿, 杨淑娟. 金合金锡铅软钎焊接头脆性行为[J]. 北京航空航天大学学报, 2013, 39(5): 670 − 673.

    Yin Na, Qu Wenqing, Yang Shujuan. Brittle behavior of gold alloy joint soldered with tin-lead solder[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(5): 670 − 673.

    [5] 成钢. 电装焊接中的“去金"问题及措施[J]. 宇航材料工艺, 2012, 5: 84 − 87.

    Cheng Gang. Problem and measure of degolding in components soldering[J]. Aerospace Materials & Technology, 2012, 5: 84 − 87.

    [6] 王晓明, 范燕平. 锡-铅共晶焊料与镀金层焊点的失效机理研究[J]. 航天器工程, 2013, 22(2): 108 − 112.

    Wang Xiaoming, Fan Yanping. Solder joints failure mechanisms research of Sn-Pb eutectic soldering on gold plated surface[J]. Spacecraft Engineering, 2013, 22(2): 108 − 112.

    [7] 林金堵, 吴梅珠. 化学镍/化学钯/浸金的表面涂覆层的可焊性和可靠性[J]. 印制电路信息, 2011, 5: 43 − 48.

    Lin Jindu, Wu Meizhu. The solderability and the reliability of Enepig final finish[J]. Printed Circuit Information, 2011, 5: 43 − 48.

    [8] 李福泉, 王春青, 杜淼. SnPb钎料与Au/Ni/Cu焊盘反应过程中Au的分布[J]. 焊接学报, 2006, 27(1): 53 − 56.

    Li Fuquan, Wang Chunqing, Du Miao. Distribution of Au during reaction of eutectic SnPb solder and Au/Ni/Cu pad[J]. Transactions of the China Welding Institution, 2006, 27(1): 53 − 56.

    [9]

    Bruson A, Gerl M. Diffusion coefficient of 113Sn, 124Sb, 110Ag, and 195Au in liquid Sn[J]. Physical Review B, 1980, 21(12): 5447 − 5454. doi: 10.1103/PhysRevB.21.5447

    [10]

    Lee T K, Zhang S, Wong C C, et al. Dissolution and reaction between Au and molten eutectic PbSn solder[J]. Materials Science and Engineering: A, 2006, 427(1−2): 136 − 141. doi: 10.1016/j.msea.2006.04.041

    [11]

    Peng S P, Wu W H, Ho C E, et al. Comparative study between Sn37Pb and Sn3Ag0.5Cu soldering with Au/Pd/Ni(P) tri-layer structure[J]. Journal of Alloys and Compounds, 2010, 493(1-2): 430 − 437.

    [12]

    Yamada T, Miura K, Kajihara M, et al. Formation of intermetallic compound layers in Sn/Au/Sn diffusion couple during annealing at 433 K[J]. Journal of Materials Science, 2004, 39(7): 2327 − 2334. doi: 10.1023/B:JMSC.0000019993.32079.c2

图(9)  /  表(4)
计量
  • 文章访问数:  637
  • HTML全文浏览量:  48
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-18
  • 网络出版日期:  2020-10-15
  • 刊出日期:  2020-10-15

目录

    /

    返回文章
    返回