高级检索

AlCoCrNiCuAg高熵合金粉末中间层真空扩散连接TC4钛合金/316L不锈钢

赵晨昊, 李鹏, 李超, 王银晨, 董红刚

赵晨昊, 李鹏, 李超, 王银晨, 董红刚. AlCoCrNiCuAg高熵合金粉末中间层真空扩散连接TC4钛合金/316L不锈钢[J]. 焊接学报, 2025, 46(6): 41-51. DOI: 10.12073/j.hjxb.20240328001
引用本文: 赵晨昊, 李鹏, 李超, 王银晨, 董红刚. AlCoCrNiCuAg高熵合金粉末中间层真空扩散连接TC4钛合金/316L不锈钢[J]. 焊接学报, 2025, 46(6): 41-51. DOI: 10.12073/j.hjxb.20240328001
ZHAO Chenhao, LI Peng, LI Chao, WANG Yinchen, DONG Honggang. Vacuum diffusion welding of TC4 titanium alloy and 316L stainless steel with AlCoCrNiCuAg high-entropy alloy powder interlayer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(6): 41-51. DOI: 10.12073/j.hjxb.20240328001
Citation: ZHAO Chenhao, LI Peng, LI Chao, WANG Yinchen, DONG Honggang. Vacuum diffusion welding of TC4 titanium alloy and 316L stainless steel with AlCoCrNiCuAg high-entropy alloy powder interlayer[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2025, 46(6): 41-51. DOI: 10.12073/j.hjxb.20240328001

AlCoCrNiCuAg高熵合金粉末中间层真空扩散连接TC4钛合金/316L不锈钢

基金项目: 

国家自然科学基金面上项目(52075074和52375313)

详细信息
    作者简介:

    赵晨昊,硕士;主要从事钛合金/不锈钢异种金属扩散焊工艺研究;Email: Zhaoch@dlut.edu.cn

    通讯作者:

    李鹏,博士,教授;Email: lipeng2016@dlut.edu.cn.

  • 中图分类号: TG 453

Vacuum diffusion welding of TC4 titanium alloy and 316L stainless steel with AlCoCrNiCuAg high-entropy alloy powder interlayer

  • 摘要:

    钛/钢扩散焊复合构件在航空航天高端制造领域有着广阔的应用前景,然而界面脆性金属间化合物是导致其接头性能劣化的主要原因,文中设计了具有液相分离特征的AlCoCrNiCuAg高熵合金粉末中间层,通过形成部分液相降低了依靠单一塑性变形对连接界面组织性能产生的不良影响,研究了在不同焊接温度作用下AlCoCrNiCuAg高熵合金中间层对TC4钛合金和316L不锈钢真空扩散接头界面组织和力学性能的影响规律.结果表明,接头典型界面结构为α-Ti + β-Ti/β-Ti/β-Ti + Ti(Fe,Ni) + Ti2Ni/Ti(Fe,Ni)/TiFe2 + Fe2Cr5Ti17/ Fe2Cr5Ti17 + λ-(Fe,Cr)2Ti + α-Fe/γ-Fe.随着焊接温度的升高,与TiFe2反应层相邻的Ti(Fe,Ni)、α-Fe等反应层厚度逐渐增加,同时接头孔洞等缺陷大幅减少,扩散焊接头抗剪强度在二者协同作用下逐渐升高,在1 010 ℃ /30 min时达到最大181 MPa.高熵合金中间层抑制了接头中TiFe2等脆性金属间化合物的产生,促进了韧性(Fe, Ni)固溶相的形成,实现了钛/钢的可靠连接.

    Abstract:

    Titanium/steel composite components by diffusion welding have a broad application prospect in advanced aerospace manufacturing. The IMCs are the main reason for the deterioration of the joint performance. AlCoCrNiCuAg high-entropy alloy powder interlayer with liquid phase separation was designed. By forming parts of the liquid phase, the adverse influence of single plastic deformation on the microstructure and mechanical properties of the interface was reduced. The effect of AlCoCrNiCuAg high-entropy alloy powder interlayer on the interfacial microstructure and mechanical properties of the joints between TC4 titanium alloy and 316L stainless steel by diffusion welding at different temperatures was investigated. The results show that the typical interfacial microstructure of the joints is α-Ti + β-Ti/β-Ti/β-Ti + Ti(Fe,Ni) + Ti2Ni/Ti(Fe,Ni)/TiFe2 + Fe2Cr5Ti17/ Fe2Cr5Ti17 + λ-(Fe,Cr)2Ti + α-Fe/γ-Fe. As the welding temperature increases, the thickness of Ti(Fe,Ni) and α-Fe adjacent to the TiFe2 reaction layer increases, and the defects at the joint pores are reduced. The shear strength of the joints by diffusion welding exhibits an increasing trend under the synergistic action, and the highest shear strength reaches 181 MPa at 1 010 °C for 30 min. The high-entropy alloy powder interlayer inhibits the generation of TiFe2 and other brittle IMCs and promotes the formation of the (Fe,Ni) solid solution phase, achieving a sound bonding between titanium and steel.

  • 图  1   丝网印刷后的试样

    Figure  1.   sample screen-printed. (a) surface morphologies; (b) macro image

    图  2   扩散焊接阶梯状工艺示意图

    Figure  2.   Ladder-like processing curves for diffusion bonding

    图  3   AlCoCrNiCuAg 高熵合金铸锭微观组织

    Figure  3.   Microstructure of AlCoCrNiCuAg HEA ingot. (a) low-magni fication image of the ingot; (b) magnified image of zone b in 3(a); (c) magnified image of zone c in 3(b); (d) magnified image of zone d in 3(b)

    图  4   AlCoCrNiCuAg 高熵合金铸锭元素分布情况

    Figure  4.   Elemental distribution of AlCoCrNiCuAg HEA ingot. (a) BEI; (b) Al; (c) Ag; (d) Co; (e) SEI; (f) Cr; (g) Cu; (h) Ni

    图  5   AlCoCrNiCuAg高熵合金粉末

    Figure  5.   AlCoCrNiCuAg HEA powder. (a) DSC curves; (b) XRD patterns and (c) microstructure

    图  6   不同焊接温度下接头显微组织

    Figure  6.   Morphology of the joints bonded at different temperatures. (a) 890 ℃; (b) 970 ℃; (c) 1010

    图  7   接头界面元素线扫描结果

    Figure  7.   Elemental line distribution. (a) 970 ℃; (b) 1010

    图  8   1010 ℃焊接温度下接头界面元素分布情况

    Figure  8.   Elemental distribution at the interface of the joint bonded at 1 010 ℃. (a) BEI; (b) Ti; (c) Cr; (d) Ag; (e) Al; (f) Fe; (g) Co; (h) Cu

    图  9   扩散焊接头微观组织演变示意图

    Figure  9.   Schematic of the microstructure evolution process. (a) physical contact and atomic diffusion; (b) eutectic phase melting and voids generating; (c) Ag-riched phase generating and shrinkage of voids; (d) growth and evolution of reaction phases

    图  10   不同焊接温度下接头抗剪强度

    Figure  10.   Shear strength of the joints at different temperatures

    图  11   不同焊接温度下焊接接头断裂路径

    Figure  11.   Fracture paths of the joints bonded at different temperatures of. (a) 890 ℃; (b) 970 ℃; (c) 1010

    图  12   不同焊接温度下接头断口形貌

    Figure  12.   Fracture morphologies of the joints at different temperatures of. (a) 890 ℃; (b) 930 ℃; (c) 970 ℃; (d) 1010

    表  1   母材和中间层的化学成分 (质量分数,%)

    Table  1   Chemical compositions of the base metals and interlayer

    材料 Cr Ni Al V Mo Co Cu Ag Mn Ti Fe
    TC4 6.1 5.7 余量
    316L 16.5 10.2 2.0 1.6 余量
    HEA interlayer 13.1 21.8 6.8 14.9 16.0 27.3
    下载: 导出CSV

    表  2   图3中标记点化学成分 (质量分数,%)

    Table  2   Elemental quantitative analysis results of the marked locations in Fig. 3

    位置 Al Co Cr Cu Ni Ag 可能相
    P1 1.87 2.42 1.97 10.97 2.59 80.18 Ag-rich FCC
    P2 20.80 22.76 25.02 7.15 24.17 0.01 BCC
    P3 32.57 7.09 19.12 11.34 26.02 3.85 B2-NiAl
    P4 1.82 0.17 0.19 19.43 0.24 78.15 Ag-rich FCC
    P5 7.42 0.18 0.22 38.27 0.47 53.44 FCC
    P6 14.34 0.17 0.27 77.90 0.16 7.17 Cu-rich FCC
    下载: 导出CSV

    表  3   图6中标记点化学成分(质量分数,%)

    Table  3   Elemental quantitative analysis results of the marked locations in Fig. 6

    位置 Ti Fe Al Co Cr Ni Cu Ag V 可能相
    P1 73.26 0.52 18.51 0.50 1.62 0.48 0.60 2.18 2.31 β-Ti
    P2 49.46 1.33 7.68 2.26 1.67 2.87 1.30 32.76 0.67 β-Ti + AgTi
    P3 59.50 6.05 5.04 8.67 7.05 9.61 1.89 3.23 1.09 β-Ti + Ti(Fe,Ni)
    P4 1.15 64.07 3.76 4.55 22.64 3.62 0.02 0.08 0.11 α-(Fe,Cr) + γ-(Fe,Cr)
    P5 70.07 9.69 9.35 0.50 3.58 2.02 0.72 0.84 3.23 β-Ti + FeTi
    P6 63.98 14.96 4.17 1.33 2.41 10.14 0.76 0.22 2.02 β-Ti + Ti(Fe,Ni) + Ti2Ni
    P7 49.88 32.60 2.51 1.05 4.03 8.20 0.72 0.07 0.93 Ti(Fe,Ni)
    P8 27.55 52.01 0.59 0.24 12.34 6.76 0.06 0.02 0.43 TiFe2 + χ-Fe2Cr5Ti17
    P9 8.63 60.15 0.70 0.24 23.64 6.18 0.07 0.01 0.38 χ-Fe2Cr5Ti17 + λ-(Fe,Cr)2Ti + α-Fe
    P10 5.66 62.71 1.35 0.22 23.74 5.67 0.21 0.01 0.43 χ-Fe2Cr5Ti17 + λ-(Fe,Cr)2Ti + α-Fe
    P11 0.38 66.52 0.12 0.24 17.76 14.66 0.22 0.01 0.10 γ-Fe
    下载: 导出CSV

    表  4   图12中标记点化学成分 (质量分数,%)

    Table  4   Elemental quantitative analysis results of the marked locations in Fig. 9

    位置 Ti Fe Al Co Cr Ni Ni Ag 可能相
    P1 30.06 56.76 1.81 0.08 7.05 10.76 0.04 0.01 TiFe2
    P2 53.65 30.69 2.85 1.89 3.32 6.19 1.44 0.01 β-Ti + TiFe
    P3 64.90 15.11 3.18 3.10 2.18 10.12 1.30 0.11 β-Ti + Ti(Fe,Ni)
    P4 18.12 67.99 5.25 0.86 5.19 2.25 0.21 0.13 TiFe2 + χ + α-Fe
    P5 59.29 22.53 3.65 2.24 3.00 7.71 1.52 0.07 β-Ti + Ti(Fe,Ni)
    P6 78.26 11.29 1.62 1.54 1.44 5.22 0.59 0.03 β-Ti + Ti(Fe,Ni)
    P7 56.94 28.98 1.99 1.33 4.12 5.37 1.29 0.00 β-Ti + Ti(Fe,Ni)
    P8 24.61 53.89 0.64 0.25 13.28 4.28 0.15 0.42 Ti(Fe,Ni) + χ-Fe2Cr5Ti17
    下载: 导出CSV
  • [1]

    XIA Y, MA Z, DU Q, et al. Microstructure and properties of the TiAl/GH3030 dissimilar joints vacuum-brazed with a Ti-based amorphous filler metal[J]. Materials Characterization, 2024, 207(1): 113520. doi: 10.1016/j.matchar.2023.113520

    [2]

    ZHANG L, LONG W, DU D, et al. The microstructure and wear properties of diamond composite coatings on TC4 made by induction brazing[J]. Diamond and Related Materials, 2022, 125(5): 109032 − 109040. doi: 10.1016/j.diamond.2022.109032

    [3]

    TASHI R, MOUSAVI S, ATABAKI M. Diffusion brazing of Ti-6Al-4V and austenitic stainless steel using silver-based interlayer[J]. Materials & Design, 2014, 54(2): 161 − 167.

    [4]

    HAO X, DONG H, LI S, et al. Lap joining of TC4 titanium alloy to 304 stainless steel with fillet weld by GTAW using copper-based filler wire[J]. Journal of Materials Processing Technology, 2018, 257: 88 − 100. doi: 10.1016/j.jmatprotec.2018.02.020

    [5] 胡奉雅, 许国敬, 陈伟, 等. 钛/钢复合板焊接技术研究现状及发展趋势[J]. 焊接学报, 2021, 42(6): 30 − 43.

    HU Fengya, XU Guojing, CHEN Wei, et al. Research status and development trend of titanium/steel bimetallic composite plates of welding[J]. Transactions of the China Welding Institution, 2021, 42(6): 30 − 43.

    [6]

    TOMASHCHUK I, SALLAMAND P. Metallurgical strategies for the joining of titanium alloys with steels[J]. Advanced Engineering Materials, 2018, 20(6): 1700764. doi: 10.1002/adem.201700764

    [7] 胡若琪, 纪康康, 王颖, 等. 316L不锈钢扩散焊接头组织性能分析[J]. 焊接学报, 2023, 44(5): 1 − 6. doi: 10.12073/j.hjxb.20220602004

    HU Ruoqi, JI Kangkang, WANG Ying, et al. Diffusion bonding of 316L stainless steel[J]. Transactions of the China Welding Institution, 2023, 44(5): 1 − 6. doi: 10.12073/j.hjxb.20220602004

    [8]

    ZHANG Y, JIANG X, FANG Y, et al. Research and development of welding methods and welding mechanism of high-entropy alloys: A review[J]. Materials Today Communications, 2021, 28: 102503. doi: 10.1016/j.mtcomm.2021.102503

    [9]

    LI P, SUN H, LI C, et al. A novel strengthening strategy for diffusion bonding of AlCoCrFeNi2.1 eutectic high entropy alloy to 304 stainless steel[J]. Transactions of Nonferrous Metals Society of China, 2023, 33(7): 2121 − 2135. doi: 10.1016/S1003-6326(23)66248-X

    [10]

    LI P, SUN H, WANG S, et al. Diffusion bonding of AlCoCrFeNi2.1 eutectic high entropy alloy to GH4169 superalloy[J]. Materials Science & Engineering A, 2020, 793: 139843.

    [11]

    LI P, LI C, DONG H, et al. Vacuum diffusion bonding of TC4 titanium alloy to 316 L stainless steel with AlCoCrCuNi2 high-entropy alloy interlayer[J]. Journal of Alloys and Compounds, 2022, 909: 164698. doi: 10.1016/j.jallcom.2022.164698

    [12]

    BALYAKIN I, REMPEL A. Atomistic calculation of the melting point of the high-entropy cantor alloy CoCrFeMnNi[C]//Doklady Physical Chemistry. Moscow: Pleiades Publishing, 2022, 502(1): 11 − 17.

    [13]

    LI P, SUN H, DONG H, et al. Microstructural evolution, bonding mechanism and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy joint fabricated via diffusion bonding[J]. Materials Science & Engineering A, 2021, 814: 141211.

    [14]

    HE P, ZHANG J, ZHOU R, et al. Diffusion bonding technology of a titanium alloy to a stainless steel web with an Ni interlayer[J]. Materials Characterization, 1999, 43(5): 287 − 92.

    [15]

    SAM S, KUNDU S, CHATTERJEE S. Diffusion bonding of titanium alloy to micro-duplex stainless steel using a nickel alloy interlayer: Interface microstructure and strength properties[J]. Materials & Design, 2012, 40: 237 − 244.

    [16]

    ELREFAEY A, TILLMANN W. Solid state diffusion bonding of titanium to steel using a copper base alloy as interlayer[J]. Journal of Materials Processing Technology, 2009, 209(5): 2746 − 2752. doi: 10.1016/j.jmatprotec.2008.06.014

    [17]

    KUMAR H, BHATTACHARYA S, KESKAR N. Solid-state diffusion bonding of pseudo-α-Ti alloy to Ti-stabilized stainless steel: with and without interlayer[J]. Journal of Materials Engineering and Performance, 2022, 31(9): 7527 − 7538. doi: 10.1007/s11665-022-06758-9

    [18]

    MUNITZ A, KAUFMAN M, CHANDLER J, et al. Melt separation phenomena in CoNiCuAlCr high entropy alloy containing silver[J]. Materials Science and Engineering: A, 2013, 560: 633 − 642. doi: 10.1016/j.msea.2012.10.007

    [19]

    GHADERI A, MOGHANNI H, DEHGHANI K. Microstructural evolution and mechanical properties of Al0.5CoCrFeNi high-entropy alloy after cold rolling and annealing treatments[J]. Journal of Materials Engineering and Performance, 2021, 30(10): 7817 − 7825. doi: 10.1007/s11665-021-05886-y

    [20] 刘捷, 尚青亮, 张炜, 等. 氢化钛粉制备钛及钛合金材料研究进展[J]. 材料导报, 2013, 27(13): 99 − 102.

    LIU Jie, SHANG Qingliang, ZHANG Wei, et al. Research progress in preparing titanium alloy by power metallurgy with titanium hydride power[J]. Materials Reports, 2013, 27(13): 99 − 102.

    [21]

    JABBAREH M, MONJI F. Thermodynamic modeling of Ag-Cu nanoalloy phase diagram[J]. Calphad, 2018, 60: 208 − 213. doi: 10.1016/j.calphad.2018.01.004

    [22]

    KAN C, YANG H. Internet of hearts—large-scale stochastic network modeling and analysis of cardiac electrical signals[M]//Stochastic Modeling and Analytics in Healthcare Delivery Systems. 2018: 211-251.

    [23]

    TSAI K, TSAI M, YEH J. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys[J]. Acta Materialia, 2013, 61(13): 4887 − 4897. doi: 10.1016/j.actamat.2013.04.058

    [24]

    WANG S, WANG K, CHEN G, et al. Thermodynamic modeling of Ti-Fe-Cr ternary system[J]. Calphad, 2017, 56: 160 − 168. doi: 10.1016/j.calphad.2016.12.007

    [25]

    LIANG M, QIN Y, ZHANG D, et al. Microstructural evolution and mechanical properties of vacuum brazed TC4 titanium alloy joints with Ti-Zr-Ni Filler metal[J]. Journal of Materials Engineering and Performance, 2022, 31(11): 9340 − 9348. doi: 10.1007/s11665-022-06907-0

    [26]

    ZHANG Y, ZUO T, TANG Z, et al. Microstructures and properties of high-entropy alloys[J]. Progress in Materials Science, 2014, 61: 1 − 93. doi: 10.1016/j.pmatsci.2013.10.001

    [27]

    XIA Y, DONG H, HAO X, et al. Vacuum brazing of Ti6Al4V alloy to 316L stainless steel using a Ti-Cu-based amorphous filler metal[J]. Journal of Materials Processing Technology, 2019, 269: 35 − 44. doi: 10.1016/j.jmatprotec.2019.01.020

  • 期刊类型引用(5)

    1. 陈舒婷. 船用气阀钴基合金等离子堆焊残余应力分析研究. 锻压装备与制造技术. 2025(01): 141-144 . 百度学术
    2. 张雪姣,蒋化南,张颖,何毅,李萌蘖,朱琳,赵德利. SA508-Ⅲ钢窄间隙埋弧焊焊后热处理残余应力分析. 焊接. 2024(10): 17-24+31 . 百度学术
    3. 洪靖华,王凌琪,童精中,唐伟. 杭州西站云门结构超厚钢管对接焊数值模拟分析. 施工技术(中英文). 2024(23): 135-141 . 百度学术
    4. 杨兴林,何芳,肖裕华,丁国娣. 排气阀等离子堆焊高强度合金粉末的残余应力与变形有限元分析. 热加工工艺. 2022(15): 128-131+137 . 百度学术
    5. 崔庆丰,房务农. 压力容器免除焊后热处理的最大厚度. 金属热处理. 2021(11): 137-142 . 百度学术

    其他类型引用(4)

图(12)  /  表(4)
计量
  • 文章访问数:  32
  • HTML全文浏览量:  4
  • PDF下载量:  17
  • 被引次数: 9
出版历程
  • 收稿日期:  2024-03-27
  • 网络出版日期:  2025-04-18
  • 刊出日期:  2025-06-24

目录

    /

    返回文章
    返回