高级检索

基于堆焊-电解的复合3D加工技术

张禹, 罗震, 谈辉, 段瑞, 张成大

张禹, 罗震, 谈辉, 段瑞, 张成大. 基于堆焊-电解的复合3D加工技术[J]. 焊接学报, 2015, 36(8): 39-42.
引用本文: 张禹, 罗震, 谈辉, 段瑞, 张成大. 基于堆焊-电解的复合3D加工技术[J]. 焊接学报, 2015, 36(8): 39-42.
ZHANG Yu, LUO Zhen, TAN Hui, DUAN Rui, ZHANG Chengda. Hybrid 3D processing technology based on build-up welding and electrolytic machining[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(8): 39-42.
Citation: ZHANG Yu, LUO Zhen, TAN Hui, DUAN Rui, ZHANG Chengda. Hybrid 3D processing technology based on build-up welding and electrolytic machining[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2015, 36(8): 39-42.

基于堆焊-电解的复合3D加工技术

基金项目: 国家自然科学基金资助项目(50975197,51275342)

Hybrid 3D processing technology based on build-up welding and electrolytic machining

  • 摘要: 建立了基于堆焊-电解的复合3D成形系统,包括弧焊机器人、数字化焊机以及电解加工设备等.通过机器人堆焊对工件进行快速成形,进而采用电解加工设备对其进行精密修形,得到与预设三维实体模型尺寸一致的成品零件.提出了一种名为螺旋递进重熔的路径规划方式,可以很好的解决堆焊成形中的塌陷问题.针对低碳钢与铝合金两大类材料进行3D成形工艺试验,发现分别采用氯化钠电解液以及磷酸硝酸钠混合电解液进行电解加工可以得到表面光洁的零件.结果表明,利用堆焊-电解复合3D加工系统可以在无模具的条件下制备尺寸精确、表面光洁的零件.
    Abstract: A hybrid 3D processing system based on build-up welding and electrolytic machining was established in this paper, which involved an arc welding robot, a digital welder and electrolytic machining device. Rough cast was built up by the robot, and then modified by the electrolytic device to get dimensional accuracy. A processing path planning called screw overlap method was developed to deal with the collapse of welding bead. Using sodium chloride and monarkite solution as electrolyte can make mild steel and aluminum alloy workpiece with a smooth surface. Finally, the as-prepared products possessing dimensional accuracy and smooth surface was manufactured by the build-up welding and electrolytic machining hybrid processing system.
  • [1] 刘一搏,孙清洁,姜云禄,等.基于冷金属过渡技术快速成形工艺[J].焊接学报, 2014, 35(7):1-4. Liu Yibo, Sun Qingjie, Jiang Yunlu, et al. Rapid prototyping process based on cold metal transfer arc welding technology[J]. Transactions of the China Welding Institution, 2014, 35(7):1-4.
    [2] 李玉龙,张华,张光云,等.基于TIG堆焊技术的低碳钢零件精密快速成形[J].焊接学报, 2009, 30(9):37-40. Li Yulong, Zhang Hua, Zhang Guangyun, et al. Precision rapid prototyping of steel parts using TIG deposition technology[J]. Transactions of the China Welding Institution, 2009, 30(9):37-40.
    [3] Katou M, Janghwan O, Yoshinari M, et al. Freeform fabrication of titanium metal and intermetallic alloys by three-dimensional micro welding[J]. Materials and Design, 2007, 28(7):2093-2098.
    [4] Xiong X H, Zhang H O, Wang G L, et al. Hybrid plasma deposition and milling for an aeroengine double helix integral impeller made of superalloy[J]. Robotics and Computer-Integrated Manufacturing, 2010, 26:291-295.
    [5] Songa Y A, Parka S, Chaeb S W. 3D welding and milling:part II-optimization of the 3D welding process using an experimental design approach[J]. International Journal of Machine Tools & Manufacture, 2005, 45(9):1063-1069.
    [6] 冯胜强,胡绳荪,杜乃成.基于UG的弧焊机器人离线编程系统的设备建模[J].焊接学报, 2008, 29(4):89-92. Feng Shengqiang, Hu Shengsun, Du Naicheng. Equipment modeling of off-line programming system of the arc welding robot based on UG[J]. Transactions of the China Welding Institution, 2008, 29(4):89-92.
  • 期刊类型引用(4)

    1. 邢松龄,李充,周海鹏,陈高强,史清宇. 铝合金型材搅拌摩擦焊无减薄接头组织和性能. 焊接学报. 2023(11): 124-128+136 . 本站查看
    2. 朱朝霞,彭琨,陈万新,阳俊. 基于弧焊机器人的金属3D打印技术研究. 世界有色金属. 2019(09): 177-178 . 百度学术
    3. 王磊磊,张占辉,徐得伟,薛家祥,曾敏. 双脉冲电弧增材制造数值模拟与晶粒细化机理. 焊接学报. 2019(04): 137-140+147+167 . 本站查看
    4. 罗震,张禹,贾鹏. Ti-6Al-4V钛合金微束等离子弧堆焊增材制造工艺研究. 焊接. 2016(04): 13-16+73 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  285
  • HTML全文浏览量:  5
  • PDF下载量:  177
  • 被引次数: 7
出版历程
  • 收稿日期:  2013-12-22

目录

    /

    返回文章
    返回