Effect of parameters on weld formation and porosity of stainless steel in laser oscillating welding
-
摘要: 采用激光摆动焊接实现了5 mm厚1Cr18Ni9Ti不锈钢的焊接,获得成形良好、低气孔率的接头.分析了焊接速度、摆动幅值、摆动频率、摆动形式对焊缝成形和气孔率的影响,从匙孔、熔池流动、气泡逸出的角度揭示了工艺参数影响气孔率的主要机理. 结果表明,对于5 mm厚不锈钢激光摆动焊接,适当提高焊接速度和摆动幅值,更利于减小气孔率;激光摆动频率在100 ~ 300 Hz可以兼顾较低气孔率和较好的焊缝成形;“8”形摆动激光可以获得相对较优的焊缝成形,焊缝气孔率最低,达到2.94%;而线性摆动激光获得焊缝成形最差,气孔率最高,达到19.13%.Abstract: Oscillating laser beam was utilized to weld 5 mm thick 1Cr18Ni9Ti stainless steel, and the joint with good appearance and low porosity was obtained. The effects of welding speed, oscillation amplitude, oscillation frequency, and oscillation pattern on weld formation and porosity were analyzed. The main mechanism of porosity suppressing was revealed from the perspectives of keyhole, molten pool flow and bubble overflow. The research results show that appropriately higher value of oscillating amplitude and welding speed were more effective for porosity suppression. There is an optimal range of oscillating frequency to get low porosity. For 5 mm thick stainless steel, when the laser oscillation frequency is 100 − 300 Hz, lower porosity and better weld formation could be obtained. Better weld formation were obtained with the lowest weld porosity of 2.94%, using the “8” shaped oscillating laser. While the worst weld formation was obtained with higher porosity of 19.13% using linear oscillating laser.
-
-
表 1 1Cr18Ni9Ti不锈钢的化学成分(质量分数,%)
Table 1 Chemical composition of 1Cr18Ni9Ti stainless steel
C Cr Ni Mn Ti S P Fe 0.10 18.1 8.44 1.82 0.66 0.03 0.03 余量 表 2 焊接工艺参数
Table 2 Welding process parameters
试样
编号激光功率P/kW 焊接速度v/(m·min−1) 离焦量Δf/mm 摆动频率f/Hz 摆动幅值D/mm A1 3.4 1 + 2 400 0.3 A2 3.8 1.5 + 2 400 0.3 A3 4.2 1.8 + 2 400 0.3 B1 4.2 1.8 + 8 100 0.3 B2 4.2 1.8 + 8 100 0.6 C1 4.6 1.8 + 8 80 0.6 C2 4.6 1.8 + 8 100 0.6 C3 4.6 1.8 + 8 300 0.6 C4 4.6 1.8 + 8 500 0.6 C5 4.6 1.8 + 8 700 0.6 D1 ~ D4 4.6 2 + 8 100 0.6 -
[1] Li Junzhao, Wen Kai, Sun Qingjie, et al. The comparison of multi-layer narrow-gap laser and arc welding of S32101 duplex stainless steel[J]. China Welding, 2022, 31(4): 37 − 47.
[2] 董功杰, 王晓隽, 陈聪, 等. 激光焊接在白车身制造中的应用和发展[J]. 汽车工艺与材料, 2021(11): 1 − 9. doi: 10.19710/J.cnki.1003-8817.20210077 Dong Gongjie, Wang Xiaojun, Chen Cong, et al. Application and development of laser welding in BIW manufacturing[J]. Automobile Technology & Material, 2021(11): 1 − 9. doi: 10.19710/J.cnki.1003-8817.20210077
[3] 包钢, 彭云, 陈武柱, 等. 超细晶粒钢光束摆动激光焊接的研究[J]. 应用激光, 2002(2): 203 − 205,208. Bao Gang, Peng Yun, Chen Wuzhu, et al. Study on laser welding of ultra-fine grained steel with weaving beam[J]. Applied Laser, 2002(2): 203 − 205,208.
[4] 宋凡, 潘攀, 陈晓江, 等. 大熔深激光焊气孔抑制技术[J]. 火箭推进, 2019, 45(6): 84 − 89. Song Fan, Pan Pan, Chen Xiaojiang, et al. Porosity suppression technology for large-depth laser welding[J]. Journal of Rocket Propulsion, 2019, 45(6): 84 − 89.
[5] 陈树青. 304不锈钢中厚板激光焊接工艺规律及机理研究[D]. 广州: 广东工业大学, 2019. Chen Shuqing. Study on the process and mechanism of laser welding of 304 stainless steel plate[D]. Guangzhou: Guangdong University of Technology, 2019.
[6] Matsunawa A, Kim J D, Seto N, et al. Dynamics of keyhole and molten pool in laser welding[J]. Journal of Laser Applications, 1998, 10(6): 247 − 254. doi: 10.2351/1.521858
[7] 赵琳, 塚本进, 荒金吾郎, 等. 10 kW光纤激光焊接缺陷的形成[J]. 焊接学报, 2015, 36(7): 55 − 58. Zhao Lin, Tsukamoto S, Arakane G, et al. Formation of defects in 10 kW fiber laser welding[J]. Transactions of the China Welding Institution, 2015, 36(7): 55 − 58.
[8] Kaplan A F H, Wiklund G. Advance weldinganalysis methods applied to heavy section welding with a 15 kW fiber laser[J]. Welding in the World, 2009, 53: 283 − 288.
[9] Powell J, Ilar T, Frostevarg J, et al. Weld root instabilities in fiber laser welding[J]. Journal of Laser Applications, 2015, 27(S2): S29008.
[10] Bachmann M, Avilov V, Gumenyuk A. et al Experimental and numerical investigation of an electromagnetic weld pool support for high power laser beam welding of austenitic stainless steel[J]. Journal of Materials Processing Technology, 2014, 214: 578 − 591. doi: 10.1016/j.jmatprotec.2013.11.013
[11] Rubben K, Mohrbacher H, Leirman E, et al. Advantages of using an oscillating laser beam for the production of tailored blanks[J]. Proceedings of SPIE-The International Society for Optical Engineering, 1997, 3097: 228 − 241.
[12] 赵琳, 张旭东, 陈武柱, 等. 光束摆动法减小激光焊接气孔倾向[J]. 焊接学报, 2004, 25(1): 29 − 32,34. doi: 10.3321/j.issn:0253-360X.2004.01.008 Zhao Lin, Zhang Xudong, Chen Wuzhu, et al. Repression of porosity with beam weaving laser welding[J]. Transactions of the China Welding Institution, 2004, 25(1): 29 − 32,34. doi: 10.3321/j.issn:0253-360X.2004.01.008
[13] Won-Ik C, Villads S, Peer W. Numerical study of the effect of the oscillation frequency in buttonhole welding[J]. Journal of Materials Processing Technology, 2018, 261: 202 − 212. doi: 10.1016/j.jmatprotec.2018.05.024
[14] 李泽宇, 徐连勇, 郝康达, 等. MAG和激光扫描-电弧复合焊X80钢接头组织和性能[J]. 焊接学报, 2022, 43(5): 36 − 42. doi: 10.12073/j.hjxb.20220101002 Li Zeyu, Xu Lianyong, Hao Kangda, et al. Microstructure and properties of MAG and oscillating laser arc hybrid welded X80 steel[J]. Transactions of the China Welding Institution, 2022, 43(5): 36 − 42. doi: 10.12073/j.hjxb.20220101002
[15] 陈根余, 王彬, 钟沛新, 等. 2060铝锂合金扫描填丝焊接工艺[J]. 焊接学报, 2020, 41(4): 44 − 50. doi: 10.12073/j.hjxb.20191016002 Chen Genyu, Wang Bin, Zhong Peixin, et al. Laser scanning welding of 2060 Al-Li alloy with filler wire[J]. Transactions of the China Welding Institution, 2020, 41(4): 44 − 50. doi: 10.12073/j.hjxb.20191016002
[16] Lei W, Ming G, Chen Z, et al. Effect of beam oscillating pattern on weld characterization of laser welding of AA6061-T6 aluminum alloy[J]. Materials & Design, 2016, 108.: 707 − 717.
[17] Ke Wenchao, Bu Xianzheng, Oliveira J P, et al. Modeling and numerical study of keyhole-induced porosity formation in laser beam oscillating welding of 5A06 aluminum alloy[J]. Optics & Laser Technology, 2021, 133(1): 106540.
[18] Fetzer F, Sommer M, Weber R, et al. Reduction of pores by means of laser beam oscillation during remote welding of AlMgSi[J]. Optics and Lasers in Engineering, 2018, 108: 68 − 77. doi: 10.1016/j.optlaseng.2018.04.012
[19] Katayama S, Mizutani M, Matsunawa A. Development of porosity prevention procedures during laser welding[J]. Proceedings of SPIE−The International Society for Optical Engineering, 2003, 4831: 281 − 288.
[20] Li S, Chen G, Katayama S, et al. Relationship between spatter formation and dynamic molten pool during high-power deep-penetration laser welding[J]. Applied Surface Science, 2014, 303(1): 481 − 488.
[21] Ilar T, Eriksson I, Powell J, et al. Root humping in laser welding – an investigation based on high speed imaging[J]. Physics Procedia, 2012, 39: 27 − 32. doi: 10.1016/j.phpro.2012.10.010
[22] Seto N, Katayama S, Matsunawa A. Porosity formation mechanism and reduction method in CO2 laser welding of stainless steel[J]. Welding International, 2002, 16: 451 − 460. doi: 10.1080/09507110209549558
-
期刊类型引用(9)
1. 金鑫,祝哮,唐鸿洋,田春雨,刘东利. 焊后热处理对6061-T6铝合金激光-MIG复合焊接头力学性能及组织的影响. 铝加工. 2024(06): 64-68 . 百度学术
2. 陈清勇,王桂兰,梁立业,张海鸥. ZL114A铝合金电弧-激光微铸锻复合增材制造组织与力学性能研究. 热加工工艺. 2023(07): 125-129 . 百度学术
3. 杨文静,权银洙,柴禄,滕俊飞. 6A02铝合金接触反应钎焊接头组织及抗剪强度. 焊接. 2023(06): 31-37 . 百度学术
4. 周勇,孙有平,何江美,李旺珍,谢梓文. 激光功率对铝/钢激光对接熔钎焊接头组织与性能的影响. 机械工程材料. 2023(07): 22-30 . 百度学术
5. 周金旭,康铭,田春雨,李哲,陈德军,恒俊楠. 焊后热处理对6063铝合金激光填丝焊接头组织与性能的影响. 失效分析与预防. 2022(04): 242-246 . 百度学术
6. 陈超,孙国瑞,冯天亭,范成磊,张慧婧. 层间高速摩擦复合WAAM铝合金构件组织与力学性能. 焊接学报. 2022(09): 38-43+115 . 本站查看
7. 周思鹏,孙有平,何江美,胡一杰,杨春洋. 2524铝合金光纤激光焊接接头的组织与力学性能. 轻合金加工技术. 2021(03): 60-68 . 百度学术
8. 周思鹏,孙有平,何江美,杨春洋. 焊接速度对2524铝合金光纤激光焊接头组织及性能的影响. 特种铸造及有色合金. 2020(10): 1134-1138 . 百度学术
9. 齐岳峰,王峰,任勇彬,韩天棋. 显微硬度在铝合金钎焊性能分析中的应用. 物理测试. 2019(05): 5-8 . 百度学术
其他类型引用(4)