高级检索

6061铝合金搅拌摩擦沉积增材修复工艺及修复区性能

程龙, 杨新岐, 唐文珅, 罗庭, 王瑞林

程龙, 杨新岐, 唐文珅, 罗庭, 王瑞林. 6061铝合金搅拌摩擦沉积增材修复工艺及修复区性能[J]. 焊接学报, 2024, 45(8): 12-23. DOI: 10.12073/j.hjxb.20230806001
引用本文: 程龙, 杨新岐, 唐文珅, 罗庭, 王瑞林. 6061铝合金搅拌摩擦沉积增材修复工艺及修复区性能[J]. 焊接学报, 2024, 45(8): 12-23. DOI: 10.12073/j.hjxb.20230806001
CHENG Long, YANG Xinqi, TANG Wenshen, LUO Ting, WANG Ruilin. Processes and repair area properties of AA6061 repaired via additive friction stir deposition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(8): 12-23. DOI: 10.12073/j.hjxb.20230806001
Citation: CHENG Long, YANG Xinqi, TANG Wenshen, LUO Ting, WANG Ruilin. Processes and repair area properties of AA6061 repaired via additive friction stir deposition[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2024, 45(8): 12-23. DOI: 10.12073/j.hjxb.20230806001

6061铝合金搅拌摩擦沉积增材修复工艺及修复区性能

基金项目: 国家自然科学基金资助项目(52175356)
详细信息
    作者简介:

    程龙,硕士研究生;主要研究方向为搅拌摩擦增材制造修复方面的应用;Email: cldyx@tju.edu.cn

    通讯作者:

    杨新岐,博士,教授; Email: xqyang@tju.edu.cn.

  • 中图分类号: TG 453.9

Processes and repair area properties of AA6061 repaired via additive friction stir deposition

  • 摘要:

    为了探讨修复工艺及模拟凹槽缺陷尺寸对搅拌摩擦沉积增材(additive friction stir deposition,AFSD)修复区组织及性能影响规律,对5 mm厚AA6061-T6板进行AFSD修复工艺试验. 结果表明,对于3 mm深度、6 ~ 24 mm不同宽度凹槽缺陷,采用主轴转速400 r/min、移动速度150 ~ 300 mm/min修复工艺均能实现沉积层与基板的有效冶金连接. 当凹槽宽度小于送料棒直径时,可以获得完全致密无缺陷的修复区;修复区附近可划分为修复沉积区、热力影响区、热影响区及母材. 沉积区完全由细小等轴晶组成,晶粒尺寸相当于基材晶粒尺寸的9.1% ~ 12.8%;在沉积区内主要强化相β"相几乎全部溶解,平均硬度为母材硬度的71.6%. 在400 r/min和300 mm/min工艺下,凹槽宽度12 mm修复态力学性能最佳,抗拉强度和断后伸长率分别为197.4 MPa和10.92%,试样均断裂于母材热影响区与热力影响区的交界处,具有韧性断裂模式. 当凹槽宽度为24 mm大于送料棒直径时,在400 r/min和150 mm/min工艺下力学性能最佳,修复态抗拉强度和断后伸长率分别为178.9 MPa和7.74%,此时产生于沉积层与基材结合界面的弱连接是影响修复性能关键因素.

    Abstract:

    The repair experiments of the additive friction stir deposition (AFSD) for the AA6061-T6 plates of 5 mm thickness were performed, and the influences of the repair processing parameters and groove defect sizes on the microstructures and properties of the repaired zone were explored. It is shown that adequate metallurgical bonding between the deposited layer and subtract can successfully be obtained for the groove defects with 3 mm depth and 6~24 mm widths under the rotational speed of 400 r/min and the transverse speeds of 150~300 mm/min. The fully dense and defect-free repair can be achieved when the groove width is smaller than the feed rod diameter, and the repair zone can be divided into the deposited zone (DZ), thermo-mechanically affected zone (TMAZ), heat-affected zone (HAZ), and base material (BM). The DZ is composed of refined equiaxed grains with grain sizes ranging from 9.1% to 12.8% of that of BM. The main β" strengthening phase in the DZ is almost completely dissolved, which results in the reduction of the average hardness of DZ corresponding to 71.6% of that of BM. For the AFSD parameters of 400 r/min, 300 mm/min, the tensile strength and elongation of the repaired sample with 12 mm groove width can reach the best mechanical properties of 197.4 MPa and 10.92%, respectively. The fracture sites of samples are all located at the interfaces of HAZ and TMAZ and they have the ductile fracture mode. The tensile strength and elongation of the repaired sample with the groove width of 24 mm which is greater than the feed rod diameter are the best mechanical properties of 178.9 MPa and 7.74%, while for the 400 r/min,150 mm/min AFSD parameters. In this case, the weak-bonding defects formed at the interface between the deposited layer and BM are the key factor to influence the repair property. The experimental findings provide valuable insights for developing novel repair technology via AFSD in aluminum alloys.

  • 核能与其它能源相比具有独特的优势,对人类社会的可持续发展具有重要意义,但其开发利用受到高温、辐照等恶劣服役条件的限制. 低活化铁素体/马氏体钢(reduced activation ferrite martensite steel,RAFM钢)因其低辐照膨胀、低氦脆敏感性、低活化和低热膨胀而被用作核聚变反应堆结构材料的候选材料之一[1-2]. RAFM钢具有典型的铁素体/回火马氏体结构,由铁素体等轴晶、板条马氏体和析出物(M23C6,M=Cr,W,Fe;MX,M=Ti,V;X=C,N)组成,并具有令人满意的强塑形匹配和热稳定性[3-5]. 近年来,通过一系列成分、组织调控方法,典型的RAFM钢如印度低活化铁素体马氏体 (INRAFM) 钢和中国低活化马氏体(CLAM)钢的操作上限温度已被提高到600 ℃,推进了聚变能的实用化进程[6]. 进一步提高聚变结构材料的耐高温、耐辐射性能,将使用温度提高到650 ℃以上,对于聚变反应堆系统实现足够的经济性能至关重要.

    电弧熔丝增材制造(wire and arc additive manufacturing, WAAM)具有高可靠性、易用性、低成本和高生产效率等优点,已成功应用于铜合金、铝合金、镁合金、钢等金属增材制造. WAAM采用焊接电源产生的电弧为热源,通过丝材的添加,在程序的控制下,根据三维数字模型由线-面-体逐渐成形出所需的三维构件. 该技术具有生产周期短、柔性程度高等特点,可以实现数字化、智能化和并行化制造,能够极大提升大型构件的制造效率,特别适用于大型复杂构件的低成本、高效快速近净成形. 此外,增材制造技术具备小熔池快速冷却凝固的冶炼特性,可以有效确保大型构件中的组织均匀性和性能均一化. 因此,电弧熔丝增材制造技术在多个领域都受到了广泛关注[7-8].

    核电站生产运行设备可用率要求高,核安全监管严格,因此核电站备品备件相对于其它行业价值高、生产周期长、可替代技术难度高. 采用电弧熔丝增材制造快速成形关键部件,是解决该问题的有效途径之一. 然而,目前国内外对电弧熔丝增材制造的研究主要集中在钛合金[9]、铝合金[10-11]、铜合金[12]及奥氏体不锈钢[13]上,对于低碳钢和铁素体/马氏体双相钢的研究还较少[14-15]. 前期,采用冷金属过渡-电弧熔丝增材制造(cold metal transfer wire and arc additive manufacturing,CMT-WAAM)技术成功制备了Fe-0.5% Y2O3成分的氧化物弥散强化(oxide dispersion strengthening,ODS)钢,利用其小熔池快速冷却凝固的冶炼特性,在基体中弥散分布50 ~ 100 nm的Y2O3纳米颗粒,从而提高其力学性能[7]. 但是对于合金元素及热处理工艺对电弧打印RAFM钢的显微组织和力学性能的影响,还需要进一步的研究.

    为了进一步研究热处理对电弧熔丝增材制造RAFM钢的显微组织与力学性能的影响,采用熔化极气体保护焊(gas metal arc welding,GMAW)制备了钛含量为0.3%的RAFM钢薄壁试样(0.3Ti-RAFM),并对打印试样进行了热处理. 系统研究了热处理前后0.3Ti-RAFMs的显微组织和力学性能的变化,揭示了热处理过程对马氏体显微组织、纳米析出相及其力学性能的影响. 为实现纳米氧化物弥散强化RAFM钢的大型化、高效化、可持续化制备提供理论指导,为新型核反应堆的开发和应用提供材料基础.

    根据表1设计的丝材成分,按照丝材填充率为20%来称取一定含量的铁粉(纯度≥99%,粒度约为75 μm)、铬铁粉(纯度≥99%,粒度约为75 μm,75%铬)、钨铁粉(纯度≥99%,粒度约为75 μm,30%钨)、钛铁粉(纯度≥99%,粒度约为75 μm,50%钛)、硅铁粉(纯度≥99%,粒度约为75 μm)、锰铁粉(纯度≥99%,粒度约为75 μm). 其中,锰硅比为4∶1,作为脱氧剂. 此外,添加0.2% NaF(纯度≥99.99%)作为稳弧剂. 将所有粉末用三维混料机混合均匀后,置于120 ℃的真空干燥箱中烘干24 h来去除粉料中的水分. 然后将烘干后的复合粉末用冷轧碳素钢带包裹,利用拉丝机组经过多道拉拔减径得到直径为1.2 mm的金属型药芯丝材. 随后,通过电弧熔丝增材制造系统来打印所需试样. 试验采用的电弧熔丝增材制造系统包括焊接机器人、Invision 450 MPa焊机等. 以Q235低碳钢板为打印基板,设置送丝速度为8.0 m/min,焊枪行走速度为6.0 mm/s,采用往复式的打印方式来打印薄壁试样. 打印过程中,氩气(99.999%)用作保护气体,保护气体流量为20 L/min,以保护熔池及其邻近区域免受氧化. GMAW焊机设置为脉冲模式,增材制造原理和单道多层试样如图1所示. 所得薄壁试样经测试得到各元素的质量分数如表1所示.

    表  1  0.3Ti-RAFM药芯焊丝和打印试样的化学成分(质量分数,%)
    Table  1.  Chemical compositions of 0.3Ti-RAFM flux-cored wire and printed samples
    材料 Cr W Mn Ti Si C O Fe
    药芯焊丝 9.01 1.50 0.80 0.30 0.20 0.08 0.033 余量
    0.3Ti-RAFM 8.92 1.46 0.62 0.24 0.12 0.06 0 .047 余量
    下载: 导出CSV 
    | 显示表格
    图  1  WAAM制备0.3Ti-RAFM钢薄壁试样
    Figure  1.  Thin-wall sample of 0.3Ti-RAFM steel fabricated by WAAM. (a) schematic diagram of WAAM process; (b) as-printed single-pass multilayer thin-walled sample

    打印的0.3Ti-RAFM薄壁试样在1050 ℃下热处理1 h后水冷,得到相应的热处理试样. 之后将打印试样和热处理试样进行线切割加工取样,将所制得的样品预磨、抛光,进行显微组织和力学性能的测试. 采用配备Cu X射线阳极(40 kV/40 mA,λ =1.5418Å)的Bruker D8 Advance X射线衍射仪获取打印试样和热处理试样的相结构. 衍射角的扫描范围为30° ~ 90°,采集时间为0.15 s/步. 将抛光后的试样用硝酸、盐酸和氢氟酸的混合溶液(体积比为2∶3∶5)进行腐蚀,随后采用Leica DMI 5000 m型金相显微镜观察每个样品的显微组织. 使用EPMA-8050G电子探针显微分析仪获得背散射电子(backscattered electron,BSE)图像和相应的元素面分布分析结果. 采用ONH836型氧/氮/氢元素分析仪检测药芯丝材和打印样品中的氧含量. 采用EDAX-TSL型电子背散射衍射(electron backscatter diffraction,EBSD)分析技术分析打印试样和热处理试样的结构信息. 测试前,将打印试样和热处理试样机械抛光以达到镜面光洁度,然后在电解液(HClO4∶C2H5OH = 95∶5)中在室温下在33 V条件下将样品电抛光10 s. EBSD测试电压为20 kV,通过TSL-OIM分析软件使用5°高斯平滑谐波级数展开法计算每个样品的磁极图. 采用Tecnai G2 F30型透射电子显微镜(transmission electron microscope, TEM)观察 3Ti-RAFM打印和热处理试样的微观结构. TEM试样采用离子减薄制样,首先用Gatan 691型离子减薄仪将样品厚度降低至约100 nm. 然后,以逐渐减小的角度和能量(2°,3 keV)对样品进行抛光,将样品的厚度逐渐减小到约50 ~ 100 nm. 线切割加工处理后的标准拉伸试样,按照GB/T 228.1—2021《金属材料 拉伸试验 第1部分:室温试验方法》和GB/T 228.2—2015《金属材料 拉伸试验 第2部分:高温试验方法》通过AG-IC型100 kN材料高温持久性能试验机测定其拉伸性能,试样拉伸速率为0.002 mm/s,分别在室温、400,600 ,650 ℃下进行拉伸试验. 试样的屈服强度(ReL)、抗拉强度(Rm)和断后伸长率(A)值采用3次测试的平均结果.

    图2为打印和热处理0.3Ti-RAFM的金相组织. 如图2a所示,打印试样的微观组织主要含有铁素体(α)、回火马氏体(αT)和少量析出物. 如图2b所示,经热处理后,0.3Ti-RAFM试样的显微组织中仍由铁素体、马氏体和密集分布的析出物组成. 其中,铁素体以不规则形状的等轴晶形式出现,而马氏体则以细长的板条形式出现,并且马氏体板条的边框带呈突起的波浪形,这一结果与He等人[16]报道的铁马钢金相显微组织结果相类似. 由于WAAM具有快速凝固、层层堆积的成形特点,在下一层打印过程中会对之前打印的试样进行回火处理,这一过程也被称为“原位回火”[17]. 因此在快速冷却形成马氏体为主的结构后,经过“原位回火”,马氏体中过饱和固溶的碳析出,形成回火马氏体和铁素体. 打印态0.3Ti-RAFM经过1050 ℃正火处理,其微观组织中的回火马氏体和铁素体发生相变,形成奥氏体,并通过快速冷却转变为马氏体 + 铁素体,形成铁素体/马氏体的显微组织.

    图  2  0.3Ti-RAFM试样的金相组织
    Figure  2.  Metallographic structure of 0.3Ti-RAFM samples. (a) as-built sample; (b) heat-treated sample

    图3为打印和热处理的0.3Ti-RAFM的EBSD结果,其中高角度晶界(取向差角大于15°)和低角度晶界(取向差角大于2°小于15°)分别用深色和浅色线标示[18]. 颗粒内部位错较少的不规则颗粒主要为铁素体晶粒,颗粒内部位错密度较高的不规则颗粒主要为回火马氏体块,回火马氏体内部为马氏体板条. 马氏体内部具有较高的低角度晶界,这可能是由于马氏体块中马氏体板条的不正确取向以及在马氏体形成过程中由整齐排列的位错形成的亚晶界. 在回火过程中,部分位错运动、湮灭,从而转变为铁素体. 从图3可以看到,打印和热处理的0.3Ti-RAFM均含有铁素体和回火马氏体,这一结果与金相组织观察结果一致. 经过热处理后,试样的显微组织未发生明显变化,说明0.3Ti-RAFM在试验条件下具有较高的热稳定性. 图4为打印和热处理0.3Ti-RAFM的晶粒尺寸分布. 打印态0.3Ti-RAFM的晶粒平均尺寸为 1.51 μm,经热处理后,平均晶粒尺寸略微增大到1.84 μm,这表明热处理对晶粒尺寸的影响不大. 这一结果也进一步表明了电弧熔丝增材制造的0.3Ti-RAFM具有较好的热稳定性.

    图  3  0.3Ti-RAFM试样的反极图和晶界图
    Figure  3.  Inverse pole figure(IPF) and grain boundary figure of 0.3Ti-RAFM samples. (a) IPF of as-built sample; (b) GBF of as-built sample; (c) IPF of heat-treated sample; (d) GBF of heat-treated sample
    图  4  0.3Ti-RAFM试样的晶粒尺寸
    Figure  4.  Grain size distribution of 0.3Ti-RAFM samples. (a) as-built sample; (b) heat-treated sample

    通过EPMA研究了打印0.3Ti-RAFM的背散射电子像及其化学成分分布,结果如图5所示. 打印态0.3Ti-RAFM具有致密的连续基体,基体内部未观察到明显的孔隙及熔合线. 此外,在晶粒内部存在氧化物及碳化物颗粒,氧化物和碳化物中有明显的Ti富集,其尺寸在0.1 ~ 1.0 μm间,但没有发现尺寸在10 μm以上的夹渣. 这一结果表明,在电弧熔丝增材制造过程中,由于其具有熔池小、凝固速度快的特点,在氧化物及碳化物颗粒发生长大与聚集前,组织凝固已经完成,从而在基体中形成超细和高度分散的氧化物颗粒. 此外,通过OHN分析仪在打印0.3Ti-RAFM中发现了约 0.05%的氧含量,这些氧可能来源于药芯丝材中合金粉末表面吸附的氧及电弧打印过程中的空气及水蒸气电离. 相比于Cr,Si,Mn,Fe等元素,Ti与O具有更高的结合能,因此这部分氧与熔池中的钛结合,形成富钛的氧化物.

    图  5  打印0.3Ti-RAFM试样的电子背散射图像和EPMA元素分布分析
    Figure  5.  Backscattered electron images and EPMA elemental distribution analysis of as-built 0.3Ti-RAFM samples. (a) BSE image; (b) Fe; (c) Cr; (d) W; (e) O; (f) Ti

    图6为热处理0.3Ti-RAFM试样的背散射电子像和化学成分分布. 在热处理后,0.3Ti-RAFM基体中的二次相颗粒数量有所增加,这可能是由于热处理过程中氧化物颗粒进一步析出. 这一结果表明,在打印0.3Ti-RAFM试样中,仍存在一部分固溶在体心立方(BCC)基体中的Ti和O元素. 由于氧在BCC基体中的固溶度极低,过饱和固溶的氧在热处理过程中会逐渐析出,从而由热力学非平衡态转变为平衡态. 此外,通过EPMA观察到的二次相颗粒尺寸在200 nm以上,根据氧化物析出的过程分析,基体中可能存在更小尺寸的氧化物颗粒,需要通过透射电子显微镜等手段对其微观组织进行表征.

    图  6  热处理0.3Ti-RAFM试样的电子背散射图像和EPMA元素分布分析
    Figure  6.  Backscattered electron image and EPMA element distribution analysis of heat-treated 0.3Ti-RAFM samples. (a) BSE image; (b) Fe; (c) Cr; (d) W; (e) O; (f) Ti

    采用透射电子显微镜对打印和热处理0.3Ti-RAFM试样的显微组织进行了更深入的分析,其TEM明场像如图7所示. 在打印试样的显微组织中可以观察到铁素体晶粒、板条马氏体晶粒、高密度位错以及一些位错胞和亚晶粒. 其中铁素体晶粒尺寸在1 μm以上,板条马氏体的宽度在500 nm左右. 由于试样中的碳含量低(约0.06%),马氏体板条的形成优于针状马氏体. 在铁素体及板条马氏体的晶界处,可以观察到尺寸为50 ~ 100 nm的第二相颗粒,EDS元素成分分析表明,这些颗粒主要为富Cr的M23C6. 此外,在晶粒内部及位错线上可以观察到尺寸更小(5 nm以下)且弥散分布的第二相颗粒(图7b). 但由于颗粒尺寸较小,难以通过EDS分析元素成分. 经热处理后,试样中的板条马氏体宽度略有增大,同样可以观察到高密度位错及位错墙组成的亚晶粒,这一结果与回火马氏体钢中观察到的显微组织一致. 此外,在晶粒内部同样观察到了较高数密度且弥散分布的第二相粒子,其尺寸与打印态相比略有提高,约为10 nm左右. 采用EDS对其成分进行分析,可以看到这些纳米颗粒主要为富Ti的氧化物颗粒. 需要注意的是,在热处理态的试样显微组织中,观察到少量的MX相碳化物的析出.

    图  7  0.3Ti-RAFM试样的TEM图
    Figure  7.  TEM images of 0.3Ti-RAFM samples. (a) TEM image of as-built sample; (b) enlarged TEM image of as-built sample; (c) TEM image of heat-treated sample; (d) enlarged TEM image of heat-treated sample

    图7d中观察到的氧化物颗粒做进一步的高分辨透射电子显微镜(high resolution TEM,HRTEM)分析,结果如图8所示. 通过HRTEM及对应的FFT变换结果可以发现,纳米颗粒所对应的晶格间距主要为2.036,1.687 Å 和 2.458 Å. 结合EDS元素分析结果,可以确定所观察到的纳米颗粒为TiO2(JCPDS 03-065-1156),上述晶格间距分别对应了TiO2 $ (\bar{5} $ 11), $(\bar{6}$ 03) 和 $(\bar{1}\bar{1}$ 2)晶面. 此外,FFT谱图中观察到的2.027 Å晶格间距的衍射斑点可对应于钢的BCC基体(JCPDS 19-0323). TiO2纳米颗粒与BCC基体之间的取向相关性为 ${(\bar{5}11)}_{\mathrm{T}\mathrm{i}{\mathrm{O}}_{2}}\parallel {(110)}_{\mathrm{M}}$ . 其晶格失配度δ[19]

    图  8  热处理0.3Ti-RAFM试样的TEM图
    Figure  8.  TEM analysis of heat-treated 0.3Ti-RAFM samples. (a) HRTEM image of heat-treated sample; (b) FFT of particle in Fig.8a square; (c) IFFT of particle in Fig.8a square
    $$ 126 \delta=\frac{\left|d_{\mathrm{Fe}(110)}-d_{\mathrm{TiO}_2(\bar511)}\right|}{d_{\mathrm{TiO}_2(\bar511)}} \times 100 \%=0.442 \%$$ (1)

    式中:dFe(110)为α-Fe(110)晶面的晶面间距; $d_{\mathrm{TiO}_2(\bar511)}$ 为TiO2 $ \left(\bar511\right) $ 晶面的晶面间距. 由于α-Fe(110)晶面与TiO2 $\left(\bar511\right)$ 晶面的晶格失配度小于5%,因此基体中析出的TiO2纳米颗粒与钢的BCC基体是共格的. 通过纳米颗粒的IFFT图像可以看到,在TiO2纳米颗粒与BCC基体界面处,晶格条纹连续,未发现晶格失配及位错,这一结果也进一步证明了TiO2纳米颗粒与BCC基体形成了共格界面. 这些与基体之间的共格界面关系的TiO2颗粒弥散分布在晶界和晶粒中,在提高材料强度的同时,不会破坏材料的延展性.

    图9为打印和热处理0.3Ti-RAFM试样在室温下的典型拉伸应力—应变曲线. 热处理0.3Ti-RAFM试样的屈服强度为945 MPa± 15 MPa,抗拉强度可达1080 MPa ± 20 MPa,分别比打印0.3Ti-RAFM试样(Rm为770 MPa ± 20 MPa 和 ReL为693 MPa ± 15 MPa)高40%和35%. 通过成分分析和微观组织分析可以看出,WAAM制备的0.3Ti-RAFM中碳含量较低,M23C6颗粒数量较少,其对抗拉强度的贡献有限. 热处理过程中,M23C6颗粒长大对强度变化的影响较小. 此外,打印0.3Ti-RAFM中的TiO2纳米颗粒析出不完全,大量的钛和氧仍以固溶原子形式存在于基体中. 热处理后,随着基体中TiO2纳米颗粒数量的提高,0.3Ti-RAFM试样的抗拉强度进一步提高. 因此热处理后强度的增加主要可归因于热处理0.3Ti-RAFM具有高硬度的马氏体基体、高位错密度导致的位错强化及较高数密度的TiO2纳米颗粒导致的弥散强化. 此外,二者均具有10.0%以上的断后伸长率,表现出较好的塑性变形能力,打印试样的断后伸长率达到16.0% ± 0.5%,经热处理后,断后伸长率略微下降到13.0% ± 0.5%,但共格TiO2纳米颗粒的析出对断后伸长率的影响不大.

    图  9  典型工程应力−应变曲线
    Figure  9.  Typical engineering stress−strain curves

    图10为不同温度下热处理0.3Ti-RAFM试样的拉伸性能. 热处理0.3Ti-RAFM试样在400 ℃下测试的屈服强度、抗拉强度和断后伸长率分别为860,1020 MPa和13.0%,与室温测试结果接近. 随着测试温度进一步升高至600 ℃,试样的抗拉强度下降至533 MPa,约为其室温抗拉强度的52.0%. 当温度升至650 ℃时,试样的抗拉强度仍可达285 MPa,这一强度高于通过铸造和粉末冶金制备的9Cr-RAFM钢,因此电弧熔丝增材制造的RAFM钢有可能在核聚变反应堆,如示范性聚变核电站(DEMO)中的高热流、高辐射条件下服役[20-21]. 通过对热处理0.3Ti-RAFM试样的显微组织分析可以发现,在其晶界和晶粒内部存在较高数密度的TiO2纳米粒子,在650 ℃条件下进行拉伸测试时,稳定的氧化物纳米颗粒可以起到钉扎晶界、钉扎位错的效果,阻碍了高温变形过程中的晶粒长大和位错运动,因此其力学性能仍可以维持较高的水平[22-23].

    图  10  不同温度下热处理试样的拉伸性能
    Figure  10.  Tensile properties of heat-treated samples at different temperatures

    图11为打印和热处理0.3Ti-RAFM试样室温拉伸断口形貌. 从图11可以看到,所有样品的断裂表面未发现孔隙和微裂纹,并且在断面上可以观察到大量尺寸均匀的韧窝. 打印试样的韧窝尺寸为0.2 ~ 5.0 μm,且部分粗晶的韧窝大且浅. 热处理试样的韧窝尺寸分布更加均匀,尺寸约为0.5 ~ 5.0 μm. 总得来说,打印和热处理态的试样均具有较好的延展性和均匀的晶粒尺寸,这也与其大于10%的断后伸长率结果一致.

    图  11  0.3Ti-RAFM试样的室温拉伸断口形貌
    Figure  11.  Tensile fracture morphologies of 0.3Ti-RAFM samples at room temperature. (a) as-built sample; (b) heat-treated sample

    (1)电弧熔丝增材制造制备的0.3Ti-RAFM试样具有典型的铁素体/马氏体双相显微组织,打印0.3Ti-RAFM试样的平均晶粒尺寸为1.51 μm. 0.3Ti-RAFM试样经1050 ℃保温1 h水冷处理后,平均晶粒尺寸为1.84 μm.

    (2)热处理后,在0.3Ti-RAFM试样晶粒内部和晶界处弥散析出了尺寸在10 nm左右的共格TiO2纳米颗粒,可以起到钉扎位错和晶界的作用.

    (3)热处理0.3Ti-RAFM试样实现了高强度和延展性的结合,其室温抗拉强度、屈服强度和断后伸长率分别为1080,945 MPa 和13.0%. 在650 ℃下热处理0.3Ti-RAFM试样的抗拉强度仍可达285 MPa,其力学性能优于铸造及粉末冶金制备的同成分RAFM钢.

  • 图  1   模拟缺陷6 mm宽凹槽示意图(mm)

    Figure  1.   Schematic of 6 mm wide groove with simulated defects

    图  2   AFSD修复凹槽工艺示意图及试验过程

    Figure  2.   Schematic and experimental process of AFSD groove repair process.(a) repair begins;(b) repair process;(c) repair ends;(d) actual repair process;(e) top view of shaft shoulder;(f) side view of shaft shoulder

    图  3   金相及拉伸试样取样位置及尺寸(mm)

    Figure  3.   Sampling locations and dimensions for metallographic and tensile test specimens

    图  4   6061-T6基材微观组织以及SEM和EDS分析

    Figure  4.   Microstructure, SEM and EDS analysis results of 6061-T6. (a) microstructure of 6061-T6; (b) SEM of 6061-T6; (c) EDS analysis results of point 1; (d) EDS analysis results of point 2

    图  5   AFSD修复150-6试样截面宏观组织分区特征

    Figure  5.   Macrostructural zoning characteristics of 150-6 sample cross section

    图  6   AFSD修复300-6试样截面不同区域的显微组织

    Figure  6.   Microstructure of different regions of 150-6 sample cross section. (a) 150-6 macroscopic morphology of repaired specimen cross-section; (b) RS-HAZ; (c) interface at the RS; (d) RS-TMAZ; (e) DZ; (f) interface at the bottom; (g) MI-TMAZ (h) interface at the AS; (i) AS-TMAZ; (j) AS-HAZ

    图  7   不同工艺参数下修复试样DZ组织形貌

    Figure  7.   Microstructure morphology of DZ microstructure of repaired samples under different process parameters. (a) 300-6; (b)150-6; (c) 300-12; (d) 150-12; (e) 300-18; (f) 150-18; (g) 300-24; (h) 150-24

    图  8   不同工艺参数下修复试样HAZ组织形貌

    Figure  8.   Microstructure morphology of HAZ of repaired samples under different process parameters. (a) 300-6; (b) 300-24; (c) 150-6

    图  9   不同工艺参数下修复试样不同区域第二相特征

    Figure  9.   Second phase characteristics in different regions of repaired samples under different process parameters. (a) 150-6 AS-HAZ; (b)150-6 DZ; (c)150-6 RS-HAZ; (d) 300-24 AS-HAZ; (e) 300-6 AS-HAZ

    图  10   不同工艺参数下修复试样局部弱连接缺陷

    Figure  10.   Kissing bonding defect in repaired samples under different process parameters. (a) 150-18 DZ; (b)300-18 DZ; (c) 150-24 DZ; (d) 150-24 groove interface; (e) 300-24 DZ; (f) 300-24 groove interface

    图  11   不同工艺参数修复试样显微硬度分布

    Figure  11.   Microhardness distribution of repaired samples with different process parameters. (a) 150-6; (b) 300-6; (c) 300-24

    图  12   BM和修复试样的拉伸性能

    Figure  12.   Tensile properties of BM and repaired samples. (a) tensile properties of BM and repaired samples; (b) stress-strain curve

    图  13   不同工艺AFSD修复试样断裂位置

    Figure  13.   Fracture location of repaired samples with different process parameters. (a) 300-6; (b) 300-18; (c) 300-24

    图  14   不同工艺AFSD修复试样断口微观形貌

    Figure  14.   Microscopic morphology of fracture surface of AFSD repaired samples with different process parameters. (a) 300-6; (b) 300-18; (c) 300-24

    表  1   6061-T6 化学成分(质量分数,%)

    Table  1   Chemical compositions of 6061-T6

    MgFeCuMnSiTiZnCrAl
    0.900.100.280.120.540.04<0.010.18余量
    下载: 导出CSV

    表  2   6061-T6 力学性能

    Table  2   Mechanical properties of 6061-T6

    抗拉强度Rm/MPa屈服强度Rp/MPa断后伸长率A(%)硬度H/HV
    29926810.5111
    下载: 导出CSV

    表  3   6061-T6铝合金AFSD修复截面宏观组织形貌

    Table  3   Macrostructural morphology of AFSD repair cross section of 6061-T6

    试样编号 修复区截面宏观组织 具体说明
    150-6 无缺陷,原始凹槽界面完全消失
    300-6 无缺陷,原始凹槽界面完全消失
    150-12 无缺陷,原始凹槽界面完全消失
    300-12 无缺陷,原始凹槽界面完全消失
    150-18 局部缺陷,但原始凹槽界面完全消失
    300-18 局部缺陷,但原始凹槽界面完全消失
    150-24 局部缺陷,存在原始凹槽底部痕迹
    300-24 局部缺陷,存在原始凹槽底部痕迹
    下载: 导出CSV
  • [1] 何鹏, 柏兴旺, 周祥曼, 等. MIG电弧增材制造6061铝合金的组织和性能[J]. 焊接学报, 2022, 43(2): 50 − 54,60. doi: 10.12073/j.hjxb.20210608001

    He Peng, Bai Xingwang, Zhou Xiangman, et al. Microstructure and properties of 6061 aluminum alloy by MIG wire and arc additive manufacturing[J]. Transactions of the China Welding Institution, 2022, 43(2): 50 − 54,60. doi: 10.12073/j.hjxb.20210608001

    [2]

    Krishnakumar S , Weidong W. Effect of welding and weld repair on crack propagation behaviour in aluminium alloy 5083 plates[J]. Materials and Design, 2001, 23(2): 201 − 208.

    [3]

    Heidarzadeh A, Mironov S, Kaibyshev R, et al. Friction stir welding/processing of metals and alloys: A comprehensive review on microstructural evolution[J]. Progress in Materials Science, 2020, 11: 7100752.

    [4] 杨新岐, 田超博, 唐文珅, 等. 高强铝合金固相摩擦挤压增材制造工艺及力学性能[J]. 金属加工(热加工), 2022(6): 1 − 9.

    Yang Xinqi, Tian Chaobo, Tang Wenshen, et al. Manufacturing process and mechanical properties of high-strength aluminum alloy solid friction extrusion additive[J]. Metal Processing (Hot Working), 2022(6): 1 − 9.

    [5]

    Williams M B, Robinson T W, Williamson C J, et al. Elucidating the effect of additive friction stir deposition on the resulting microstructure and mechanical properties of magnesium alloy WE43[J]. Metals, 2021, 11(11): 1739.

    [6]

    Avery D Z, Rivera O G, Mason C J T, et al. Fatigue behavior of solid-state additive manufactured inconel 625[J]. The Journal of the Minerals, Metals & Materials Society, 2018, 70(11): 2475 − 2484.

    [7]

    Priyanshi A, Sankar H R, Surekha Y, et al. Processing-structure-property correlation in additive friction stir deposited Ti-6Al-4V alloy from recycled metal chips [J]. Additive Manufacturing, 2021, 47: 102259.

    [8]

    Priedeman J L, Phillips B J, Lopez J J, et al. Microstructure development in additive friction stir-deposited Cu[J]. Metals, 2020, 10(11): 1538.

    [9]

    Griffiths R J, Perry M E J, Sietins J M, et al. A perspective on solid-state additive anufacturing of aluminum matrix composites using MELD[J]. Journal of Materials Engineering and Performance, 2019, 28(2): 648 − 656. doi: 10.1007/s11665-018-3649-3

    [10]

    Xie R, Liang T, Shi Y, et al. Revealing the bonding mechanisms between deposit and substrate of the friction rolling additive manufactured hybrid aluminum alloys[J]. Additive Manufacturing, 2022, 56: 102942.

    [11]

    Griffiths R J, Petersen D T, Garcia D, et al. Additive friction stir-enabled solid-state additive manufacturing for the repair of 7075 aluminum alloy[J]. Applied Sciences, 2019, 9(17): 3486.

    [12]

    Martin L P, Luccitti A, Walluk M. Repair of aluminum 6061 plate by additive friction stir deposition[J]. The International Journal of Advanced Manufacturing Technology, 2022, 118(3): 759 − 773.

    [13]

    Avery D Z, Cleek C E, Phillips B J, et al. Evaluation of microstructure and mechanical properties of Al-Zn-Mg-Cu alloy repaired via additive friction stir deposition[J]. Journal of Engineering Materials and Technology, 2022(3): 1 − 35.

    [14]

    Fernández C M A, Rey R A, Ortega M J C, et al. Friction stir processing strategies to develop a surface composite layer on AA6061-T6[J]. Materials and Manufacturing Processes, 2018, 33(10): 1133 − 1140. doi: 10.1080/10426914.2017.1415447

    [15]

    Ozturk F, Sisman A, Toros S, et al. Influence of aging treatment on mechanical properties of 6061 aluminum alloy[J]. Materials & Design, 2010, 31(2): 972 − 975.

    [16]

    Chakrabarti D J, Laughlin D E. Phase relations and precipitation in Al–Mg–Si alloys with Cu additions[J]. Progress in Materials Science, 2004, 49(3-4): 389 − 410. doi: 10.1016/S0079-6425(03)00031-8

图(14)  /  表(3)
计量
  • 文章访问数:  263
  • HTML全文浏览量:  37
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-05
  • 网络出版日期:  2024-06-23
  • 刊出日期:  2024-08-24

目录

/

返回文章
返回