Study on friction stir welding of magnesium alloy with backing plate
-
摘要:
常规搅拌摩擦焊中,不同厚度的材料所适配的最佳搅拌针长度也不相同,搅拌针过长或过短都会对焊接效果产生不利影响. 为了解决这一局限性,提出了一种在焊缝背面添加适当厚度同种材料垫板的新型焊接工艺,在该工艺中,搅拌针长度大于被焊板材厚度,将垫板与母材焊接在一起,一方面,降低了对搅拌针长度的要求;另一方面,可消除焊缝减薄产生的不利影响. 结果表明,采用该方法分析1.5 mm厚AZ31B镁合金的对接焊,接头抗拉强度最大可达母材的91.19%,此外,分析了焊缝横截面微观组织和显微硬度分布,通过所建立的卷积神经网络模型,对接头抗拉强度随参数变化的分布情况进行了预测,获取了最佳工艺参数.
Abstract:In conventional friction stir welding, the length of the stirring pin needs to be strictly matched with the thickness of the welded plate. A too-long or too-short stirring pin will adversely affect the welding effect. To solve this limitation, this paper proposes a new welding process that adds a backing plate of the same material with appropriate thickness to the back of the weld seam. In this process, the length of the stirring pin is greater than the thickness of the welded plate, and the backing plate is fused with the base metal. On the one hand, the requirement for stirring pin length is reduced. On the other hand, the adverse effects of weld seam thinning can be eliminated. The butt welding of 1.5 mm thick AZ31B magnesium alloy was studied by this method. The maximum tensile strength of the weld joint can reach 91.19% of the base metal. In addition, the microstructure and microhardness distribution of the weld beam cross-section were analyzed. The optimal process parameters were obtained by the established convolutional neural network model, and the distribution of joint tensile strength with the change of parameters was predicted.
-
Keywords:
- friction stir welding /
- AZ31B magnesium alloy /
- backing plate /
- neural network
-
-
表 1 焊接参数及抗拉强度
Table 1 Welding parameters and tensile strength
序号 转速
n/(r·min−1)焊接速度
v/(mm·min−1)下压量d/mm 抗拉强度Rm/MPa 1 1 000 25 0.15 230.26 2 1 000 25 0.17 238.93 3 1 000 25 0.20 219.96 4 1 000 30 0.15 225.31 5 1 000 30 0.17 232.36 6 1 000 30 0.20 234.67 7 1 000 35 0.15 216.26 8 1 000 35 0.17 224.26 9 1 000 35 0.20 220.64 10 1 050 25 0.15 229.39 11 1 050 25 0.17 234.32 12 1 050 25 0.20 236.62 13 1 050 30 0.15 218.91 14 1 050 30 0.17 220.91 15 1 050 30 0.20 215.84 16 1 050 35 0.15 226.95 17 1 050 35 0.17 226.93 18 1 050 35 0.20 230.99 19 1 100 25 0.15 222.36 20 1 100 25 0.17 231.36 21 1 100 25 0.20 230.13 22 1 100 30 0.15 208.91 23 1 100 30 0.17 217.91 24 1 100 30 0.20 215.92 25 1 100 35 0.15 228.02 26 1 100 35 0.17 236.03 27 1 100 35 0.20 235.32 表 2 实测值与预测值对比结果
Table 2 Comparison of the predicted results with the actual experimental values
转速
n/(r·min−1)焊接速度
v/(mm·min−1)下压量
d/mm抗拉强度实测值
Rm1/MPa抗拉强度预测值
Rm2/MPa误差
δ(%)1 000 25 0.15 230.26 221.27 −3.90 1 000 30 0.17 232.36 238.47 2.63 1 000 35 0.20 220.64 229.35 3.95 1 050 25 0.15 229.39 235.74 2.77 1 050 30 0.17 220.91 212.74 −3.70 1 050 35 0.20 230.99 222.59 −3.64 1 100 25 0.15 222.36 219.40 −5.58 1 100 30 0.17 217.91 222.94 2.31 1 100 35 0.20 235.32 224.38 −4.65 表 3 不同转速时的最佳参数范围
Table 3 Range of optimal parameters for different rotational speeds
转速
n/(r·min−1)焊接速度
v/(mm·min−1)下压量
d/mm最高抗拉强度 Rmax/MPa 1000 25 ~ 28 0.15 ~ 0.17 235.6 1020 28 ~ 33 0.175 ~ 0.19 236.1 1040 25 ~ 27 0.15 ~ 0.175 234.9 1060 33 ~ 35 0.18 ~ 0.19 232.3 1080 25 ~ 27 0.185 ~ 0.2 236.1 1100 25 ~ 29 0.175 ~ 0.19 234.7 -
[1] Cao H J, Li S Q, Zhang Y G, et al. Mg2Sn-induced whisker growth on the surfaces of Mg/Sn/Mg ultrasonic-assisted soldering joints[J]. China Welding, 2022, 31(11): 47 − 59.
[2] 刘坤, 李洁, 王浩, 等. 镁合金焊接凝固裂纹敏感性评价及晶间液相回填规律分析[J]. 焊接学报, 2023, 44(9): 9 − 15. doi: 10.12073/j.hjxb.20221126001 Liu Kun, Li Jie, Wang Hao, et al. Evaluating solidification cracking susceptibility of Mg alloys and intergranular liquid backfilling during welding[J]. Transactions of the China Welding Institution, 2023, 44(9): 9 − 15. doi: 10.12073/j.hjxb.20221126001
[3] 闫志峰, 王卓然, 王树邦, 等. AZ31 镁合金双面对称搅拌摩擦焊接头疲劳性能[J]. 焊接学报, 2022, 43(6): 61 − 68. Yan Zhifeng, Wang Zhuoran, Wang Shubang, et al. Fatigue properties of AZ31 magnesium alloy welded joint by double-sided friction stir welding[J]. Transactions of the China Welding Institution, 2022, 43(6): 61 − 68.
[4] Wang S, Yan, Gu Z. Weld formation, microstructure evolution and mechanical property of laser-arc hybrid welded AZ31B magnesium alloy[J]. Metals (Basel), 2022, 12(4): 696. doi: 10.3390/met12040696
[5] Lingampalli B, Dondapati S. Corrosion behaviour of friction stir welded ZM21 magnesium alloy[J]. Materials Today:Proceedings, 2021, 46: 1464 − 1469. doi: 10.1016/j.matpr.2021.03.394
[6] Sivashanmugam N, Harikrishna K L, Koteswara Rao S R, et al. Mechanical and corrosion characteristics of micro-arc oxidized magnesium alloy (ZE41) friction stir welds in modified SBF[J]. Physica Scripta, 2023, 98: 105901. doi: 10.1088/1402-4896/acf350
[7] Xu Y, Ke L M, Mao Y Q, et al. Friction stir welding of aluminium to magnesium: a critical review[J]. Materials Science and Technology, 2022, 38(9): 517 − 534. doi: 10.1080/02670836.2022.2062642
[8] Tolun F. Evaluation of welding parameters effects in friction stir welding of AZ31B Mg alloy[J]. Kovove Materialy-Metallic Materials, 2022, 60(2): 109 − 120.
[9] Balaji S, Aadithya B S, Balachandar K. Conventional and underwater friction stir welded AA2024-T351 aluminium alloy - a comparative analysis[J]. World Journal of Engineering, 2020, 17(6): 795 − 801. doi: 10.1108/WJE-09-2019-0270
[10] Saravanakumar R, Rajasekaran T, Pandey C, et al. Mechanical and microstructural characteristics of underwater friction stir welded AA5083 Armor-Grade aluminum alloy joints[J]. Journal of Materials Engineering and Performance, 2022, 31: 8459 − 8472. doi: 10.1007/s11665-022-06832-2
[11] 武传松, 刘小超, 高嵩. 采用辅助能量的搅拌摩擦焊新工艺[J]. 焊接, 2015(10): 9 − 17. doi: 10.3969/j.issn.1001-1382.2015.10.004 Wu Chuansong, Liu Xiaochao, Gao Song. New processes of secondary energy assisted friction stir welding[J]. Welding & Joining, 2015(10): 9 − 17. doi: 10.3969/j.issn.1001-1382.2015.10.004
[12] Zhou Z, Yue Y, Ji S, et al. Effect of rotating speed on joint morphology and lap shear properties of stationary shoulder friction stir lap welded 6061-T6 aluminum alloy[J]. The International Journal of Advanced Manufacturing Technology, 2017, 88(5-8): 2135 − 2141. doi: 10.1007/s00170-016-8924-6
[13] 邓黎鹏, 柯黎明, 刘金合. 基于压焊原理的搅拌摩擦焊匙孔填补技术[J]. 焊接学报, 2019, 40(6): 107 − 111. Deng Lipeng, Ke Liming, Liu Jinhe. A key-hole filling technology for friction stir welding based on the theory of pressure welding[J]. Transactions of the China Welding Institution, 2019, 40(6): 107 − 111.
[14] Raj D, Biswas P. Experimental investigation of the effect of induction preheating on the microstructure evolution and corrosion behaviour of dissimilar FSW (IN718 and SS316L) joints[J]. Journal of Manufactaing Processes, 2023, 95(3): 143 − 159.
[15] Zhou C, Yang X, Luan G. Effect of root flaws on the fatigue property of friction stir welds in 2024-T3 aluminum alloys[J]. Materials Science & Engineering:A, 2006, 418(1): 155 − 160.
[16] 宋建岭, 赵英杰, 孙广达, 等. 搅拌针长度对2A14铝合金锁底结构搅拌摩擦焊接头组织和性能的影响[J]. 机械工程材料, 2020, 44(12): 18 − 23. doi: 10.11973/jxgccl202012003 Song Jianling, Zhao Yingjie, Sun Guangda, et al. Effect of pin length on microstructure and properties of friction stir welded joint of 2A14 aluminum alloy lock bottom structure[J]. Materials for Mechanical Engineering, 2020, 44(12): 18 − 23. doi: 10.11973/jxgccl202012003
[17] 郭超. 基于垫板/凹槽设计铝合金FSW接头完整性及力学性能研究[D]. 南京: 南京航空航天大学, 2019 Guo Chao. Research on integrity and mechanical properties of friction stir welding of aluminum alloy adopting upper sheet/grooved backing plate[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019.
[18] Mengistie A K, Bogale T M. Development of automatic orbital pipe MIG welding system and process parameters’ optimization of AISI 1020 mild steel pipe using hybrid artificial neural network and genetic algorithm[J]. The International Journal of Advanced Manufacturing Technology, 2023, 128: 2013: 2028.
[19] Rawa J H, Dehkordi M H, Kholoud M J, et al. Using the numerical simulation and artificial neural network (ANN) to evaluate temperature distribution in pulsed laser welding of different alloys[J]. Engineering Applications of Artificial Intelligence, 2023, 126: 107025. doi: 10.1016/j.engappai.2023.107025
[20] Kim Y G, Fujii H, Tsumura T, et al. Three defect types in friction stir welding of aluminum die casting alloy[J]. Materials Science & Engineering:A, 2006, 415(1): 250 − 254.
[21] 孙国芹, 陈亚静, 曹方莉, 等. 2219-T6铝合金搅拌摩擦焊接头疲劳性能[J]. 北京工业大学学报, 2015, 41(11): 1670 − 1674. doi: 10.11936/bjutxb2015050054 Sun Guoqin, Chen Yajing, Cao Fangli, et al. Fatigue property research of friction stir welded joints for 2219-T6 aluminum alloy[J]. Journal of Beijing University of Technology, 2015, 41(11): 1670 − 1674. doi: 10.11936/bjutxb2015050054
[22] Neto D M, Neto P. Numerical modeling of friction stir welding process: a literature review[J]. The International Journal of Advanced Manufacturing Technology, 2013, 65(1-4): 115 − 126. doi: 10.1007/s00170-012-4154-8
-
期刊类型引用(14)
1. 陈文杰,纪冬梅. 反应堆压力容器接管安全端焊接残余应力模拟及其焊接参数优化研究. 精密成形工程. 2024(02): 108-116 . 百度学术
2. 王申,王栋,冯涛,杨香,汪思鹏,魏志宏. A105锻钢球阀激光深熔焊接工艺优化及组织性能研究. 电焊机. 2024(03): 89-98 . 百度学术
3. 石开荣,李浩江,姜正荣. 考虑焊接影响的既有钢框架结构抽柱改造施工过程模拟与监测. 施工技术(中英文). 2024(23): 103-109 . 百度学术
4. 陈文刚. 白车身典型接头点焊焊接变形仿真及研究. 汽车工艺与材料. 2023(03): 24-29 . 百度学术
5. 钟军. 焊接工艺参数优化对焊缝收缩量影响研究. 焊接技术. 2023(09): 54-58+146 . 百度学术
6. 吴斌,肖轶男,毛迪. 涡轮增压器叶轮参数设计. 机械制造. 2023(10): 19-22 . 百度学术
7. 陈士忠,白云飞,刘子金,汶浩. 焊接参数对钢筋骨架主筋力学性能影响. 沈阳建筑大学学报(自然科学版). 2021(05): 935-941 . 百度学术
8. 陈树君,董海洋,张海沧,闫朝阳. 铝合金T形接头双侧脉冲MIG单道焊接工艺. 焊接. 2021(08): 1-6+28+62 . 百度学术
9. 李钧正,韩志杰,陈红卫. 60N规格U75V钢轨矫直工艺数值仿真分析及工艺实践. 河南冶金. 2021(05): 31-35 . 百度学术
10. 李杰,周鹏,惠媛媛. 两种常见焊接接头的机器人焊接工艺. 焊接. 2020(06): 51-56+64 . 百度学术
11. 任书文,陈士忠,刘子金,夏忠贤,侯爱山,王永华. 钢筋骨架焊接工艺参数的优化研究. 建筑机械化. 2020(11): 98-101 . 百度学术
12. 曹海涛,张鹏,杜云慧,李鸿武,王玉洁,苏丽洁. Mg-Gd-Y-Zr激光焊接工艺优化及高温力学性能. 焊接学报. 2020(10): 87-96+102 . 本站查看
13. 薛玉,邱望标,郭天水,李莉娅. 基于有限元法的管廊模具侧模焊接参数优化. 热加工工艺. 2019(19): 146-150 . 百度学术
14. 贺颂. U78CrV钢轨移动式闪光焊接工艺优化. 焊接. 2018(12): 51-54+68 . 百度学术
其他类型引用(13)