Structure and properties of friction stir welding joint of aluminum profile
-
摘要:
传统铝合金型材通常采用接头局部加厚的凸台设计,用于抵消搅拌摩擦焊中轴肩下压力造成的接头减薄量. 然而,此类铝型材表面焊后需要耗费大量工时进行人工打磨. 为了减少焊缝的打磨量,文中设计了一种无凸台结构的铝型材,通过改变搅拌头轴肩的结构形式,实现了无减薄工艺的焊接. 从焊缝的成形质量、力学性能和组织结构角度开展深入研究,确定了焊接下压量等关键工艺参数. 最后,结合实际生产中型材存在挤压公差和拼接公差的特点,研究了接头错边量对焊接质量的影响,并确定合理的接头公差范围.
Abstract:Welding joints with partial thickened structures are usually adopted in the design of aluminum alloy profiles to offset the thinning of the joint caused by the downward pressure of the shoulder in friction stir welding. However, after welding of such aluminum profiles, it will take a lot of hours to manually polish the thickened structures. In order to reduce the amount of grinding, a new type of aluminum profile without thickened structure is designed in this paper, ensuring non-thinning-welding by changing the structure of shoulder. In-depth research is carried out from the perspective of weld forming quality, mechanical properties and organizational structure, and key process parameters such as welding downforce are determined. Finally, combined with the characteristics of extrusion tolerance and assembly tolerance in industrial production, the influence of joint misalignment on welding quality is studied, and a reasonable joint tolerance range is determined.
-
Keywords:
- Friction stir welding /
- Aluminum alloy /
- Profiles /
- Non-weld-thinning technique
-
-
-
[1] Chen S, Zhou Y, Xue J, et al. High rotation speed friction stir welding for 2014 aluminum alloy thin sheets[J]. Journal of Materials Engineering and Performance, 2017, 26(3): 1337 − 1345. doi: 10.1007/s11665-017-2524-y
[2] D’Urso G, Giardini C, Lorenzi S, et al. Fatigue crack growth in the welding nugget of FSW joints of a 6060 aluminum alloy[J]. Journal of Materials Processing Technology, 2014, 214(10): 2075 − 2084. doi: 10.1016/j.jmatprotec.2014.01.013
[3] Lu X, Luan Y, Meng X, et al. Temperature distribution and mechanical properties of FSW medium thickness aluminum alloy 2219[J]. The International Journal of Advanced Manufacturing Technology, 2022, 119(11): 7229 − 7241.
[4] Hattingh D G, Blignault C, Van Niekerk T I, et al. Characterization of the influences of FSW tool geometry on welding forces and weld tensile strength using an instrumented tool[J]. Journal of Materials Processing Technology, 2008, 203(1-3): 46 − 57. doi: 10.1016/j.jmatprotec.2007.10.028
[5] 张颖川, 马国栋, 代鹏, 等. 6061-T6铝合金中空薄壁型材双轴肩搅拌摩擦焊工具设计与工艺分析[J]. 焊接学报, 2022, 43(6): 88 − 95. doi: 10.12073/j.hjxb.20210512001 Zhang Yingchuan, Ma Guodong, Dai Peng, et al. Tool design and process analysis of bobbing tool friction stir welding for thin-walled extrude profile of 6061-T6 aluminum alloy[J]. Transactions of the China Welding Institution, 2022, 43(6): 88 − 95. doi: 10.12073/j.hjxb.20210512001
[6] Hao Y, Liu W. Analysis on exceptional cryogenic mechanical properties of AA2219 alloy FSW joints in multi-scale[J]. Materials Science and Engineering:A, 2022, 850: 143489. doi: 10.1016/j.msea.2022.143489
[7] 张禹, 罗震, 谈辉, 等. 基于堆焊-电解的复合3D加工技术[J]. 焊接学报, 2015, 36(8): 39 − 42. Zhang Yu, Luo Zhen, Tan Hui, et al. Hybrid 3D processing technology based on build-up welding and electrolytic machining[J]. Transactions of the China Welding Institution, 2015, 36(8): 39 − 42.
[8] Das D, Bag S, Pal S. A finite element model for surface and volumetric defects in the FSW process using a coupled Eulerian–Lagrangian approach[J]. Science and Technology of Welding and Joining, 2021, 26(5): 412 − 419. doi: 10.1080/13621718.2021.1931760
[9] 沈浩然, 杨天豪, 贾洪德, 等. 铝锂合金无减薄搅拌摩擦焊工艺研究[J]. 电焊机, 2018, 48(7): 41 − 45. Shen Haoran, Yang Tianhao, Jia Hongde, et al. Process study of aluminum-lithium alloy friction stir welding without thinning[J]. Electric Welding Machine, 2018, 48(7): 41 − 45.
[10] 柏久阳, 王计辉, 林三宝, 等. 铝合金电弧增材制造焊道宽度尺寸预测[J]. 焊接学报, 2015, 36(9): 87 − 90. Bai Jiuyang, Wang Jihui, Lin Sanbao, et al. Width prediction of aluminium alloy weld additively manufactured by TIG arc[J]. Transactions of the China Welding Institution, 2015, 36(9): 87 − 90.
[11] 柏久阳, 范成磊, 林三宝, 等. 基板散热作用对电弧堆焊成形中熔宽调控的影响[J]. 焊接学报, 2016, 37(3): 115 − 119. Bai Jiuyang, Fan Chenglei, Lin Sanbao, et al. Effects of baseplate's heat sink on the control strategies of weld width during GTA-additive manufacturing[J]. Transactions of the China Welding Institution, 2016, 37(3): 115 − 119.
[12] DIN EN 573-3, Aluminium and aluminium alloys-Chemical composition and form of wrought products-Part 3: Chemical composition and form of products (includes Amendment A1: 2022)[S]. European standards, 2022.
[13] DIN EN 755-2, Aluminium and aluminium alloys-Extruded rod/bar, tube and profiles-Part 2: Mechanical properties[S]. European standards, 2016.
[14] GB/T 2651-2008, 焊接接头拉伸试验方法[S]. 全国焊接标准化技术委员会, 2008. GB/T 2651-2008, Tensile test method on welded joints[S]. SAC/TC55, 2008.
[15] Karthikeyan S, Mohan K, Arivazhagan S. Multi objective optimization of FSW process parameters to enhance the tensile strength and hardness of AA7068 welded joints[J]. Surface Topography: Metrology and Properties, 2021, 9(4): 045010. doi: 10.1088/2051-672X/ac0e7d
-
期刊类型引用(0)
其他类型引用(1)