高级检索

一种基于能量耗散的对接接头疲劳寿命快速预测模型

魏巍, 孙杨, 赵兴明, 陈明华, 邹丽, 杨鑫华

魏巍, 孙杨, 赵兴明, 陈明华, 邹丽, 杨鑫华. 一种基于能量耗散的对接接头疲劳寿命快速预测模型[J]. 焊接学报, 2023, 44(8): 91-97. DOI: 10.12073/j.hjxb.20220929005
引用本文: 魏巍, 孙杨, 赵兴明, 陈明华, 邹丽, 杨鑫华. 一种基于能量耗散的对接接头疲劳寿命快速预测模型[J]. 焊接学报, 2023, 44(8): 91-97. DOI: 10.12073/j.hjxb.20220929005
WEI Wei, SUN Yang, ZHAO Xingming, CHEN Minghua, ZOU Li, YANG Xinhua. A rapid fatigue life prediction model of butt joints based on energy dissipation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 91-97. DOI: 10.12073/j.hjxb.20220929005
Citation: WEI Wei, SUN Yang, ZHAO Xingming, CHEN Minghua, ZOU Li, YANG Xinhua. A rapid fatigue life prediction model of butt joints based on energy dissipation[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(8): 91-97. DOI: 10.12073/j.hjxb.20220929005

一种基于能量耗散的对接接头疲劳寿命快速预测模型

基金项目: 国家自然科学基金资助项目(51875072和52005071);辽宁省高等学校国境外留学项目(2018LNGXGJWPY-YB012);辽宁省自然科学基金项目资助项目(MS-2021-319);辽宁省教育厅基本科研项目青年项目(LJKQZ20222271);辽宁工业大学博士科研启动基金(XB2022001)
详细信息
    作者简介:

    魏巍,博士;主要研究方向为焊接结构疲劳可靠性评估;Email: ouyangweirui1995@163.com

    通讯作者:

    杨鑫华,博士,教授,博士研究生导师;Email: yangxh@djtu.edu.cn

  • 中图分类号: TG 405

A rapid fatigue life prediction model of butt joints based on energy dissipation

  • 摘要: 通过引入ISV(internal state variable)本构模型中的αβ变量,建立了一种与对接接头高周疲劳滞弹性和非弹性行为相关的能量耗散模型,并定义了两个特征应力幅,即标志着可恢复滞弹性和不可恢复非弹性行为开始形成的关键应力幅σc0σc1(疲劳极限);借助该能量耗散模型,研究了不同应力幅下的对接接头能量耗散响应情况,发现能量耗散在疲劳极限附近呈现从线性响应到非线性响应的过渡;在此基础上,考虑到当应力幅高于疲劳极限时,全寿命周期的能量耗散存在临界值,结合与损伤相关的非弹性耗散,研发了一种基于损伤累积的疲劳寿命预测模型,并对接头的疲劳寿命进行了快速预测. 结果表明,经预测数据和试验数据拟合的中值S-N曲线一致程度较好,从而证明了模型可用于实现对接接头的疲劳寿命快速、精确预测.
    Abstract: An energy dissipation model for high cycle fatigue linked to anelastic and inelastic behavior of butt joints is developed by introducing α and β variables of the internal state variable (ISV) constitutive model. The crucial stress amplitudes, σc0 and σc1 (fatigue limit), corresponding to the onset of recoverable anelastic and unrecoverable inelastic behavior, are defined as two characteristic stress amplitudes. The energy dissipation response of butt joints under different stress amplitudes is examined using this energy dissipation model. The results demonstrate that when stress levels are close to the fatigue limit, the energy dissipation exhibits a transition from a linear response to a nonlinear response. On this basis, considering that when the stress amplitude is above the fatigue limit, there is a critical value for the energy dissipation during the fatigue duration, a fatigue life prediction model based on damage accumulation is developed in combination with the damage-related inelastic dissipation, thereby reaching a rapid fatigue life prediction. The results show that the median S-N curve fitted by the predicted data and the test data is in good agreement, and this validates that the proposed model can be utilized to realize a rapid and accurate prediction of the fatigue life of butt joints.
  • 图  1   ISV模型示意图

    Figure  1.   Schematic of internal state variable (ISV) model

    图  2   典型的疲劳温升进程示意图

    Figure  2.   Schematic of the typical temperature rise process

    图  3   不同应力幅水平下的能量耗散响应

    Figure  3.   Energy dissipation response under different stress amplitude levels

    图  4   激光填丝焊示意图

    Figure  4.   Schematic of laser welding with filler wire

    图  5   Q310NQL2-Q345NQR2对接接头尺寸(mm)

    Figure  5.   Dimension of Q310NQL2-Q345NQR2 butt joint

    图  6   热像测试与疲劳试验系统

    Figure  6.   System of thermographic monitor and fatigue test

    图  7   Q310NQL2-Q345NQR2对接接头在不同应力幅下的能量耗散响应

    Figure  7.   Energy dissipation response of Q310NQL2-Q345NQR2 butt joints under different stress amplitudes

    图  8   应力幅为148.5 MPa下的对接接头高周疲劳能量耗散及其平均值

    Figure  8.   Energy dissipation and its mean value of butt joints with the stress amplitude equals 148.5 MPa

    图  9   经预测数据和试验数据拟合的中值S-N曲线对比

    Figure  9.   Comparison of the median S-N curve fitted by the predicted and tested data

    表  1   Q310NQL2和Q345NQR2耐候钢以及ER50-G焊丝主要化学成分

    Table  1   Main chemical composition of Q310NQL2, Q345NQR2 weathering steel, and ER50-G filler wire

    材料CSiMnPSCuCrNiTiFe
    Q310NQL2≤0.120.25 ~ 0.750.20 ~ 0.500.06 ~ 0.12≤0.020.25 ~ 0.500.30 ~ 1.250.12 ~ 0.65余量
    Q345NQR2≤0.120.25 ~ 0.75≤1.00.06 ~ 0.15≤0.020.25 ~ 0.500.30 ~ 1.250.12 ~ 0.65余量
    ER50-G≤0.10≤0.600.90 ~ 1.30≤0.025≤0.020.20 ~ 0.500.30 ~ 0.900.20 ~ 0.60余量
    下载: 导出CSV

    表  2   Q310NQL2和Q345NQR2耐候钢以及ER50-G焊丝力学性能

    Table  2   Mechanical propertie parameters of Q310NQL2, Q345NQR2 weathering steel, and ER50-G filler wire

    材料屈服强度
    ReL/MPa
    抗拉强度
    Rm/MPa
    断后伸长率
    A(%)
    Q310NQL2≥310480 ~ 670≥22
    Q345NQR2≥345490 ~ 675≥22
    ER-50G≥400≥500≥22
    下载: 导出CSV

    表  3   能量耗散模型参数

    Table  3   Parameters of energy disspation model

    σc0σc1FanFink
    651264.7 × 10−28.20 × 10−2310.18
    下载: 导出CSV
  • [1] 郭丽娟, 田慧, 李洋, 等. 大角度激光填丝双面焊碳钢车体T形接头工艺及性能研究[J]. 焊接, 2017(12): 56 − 60.

    Guo Lijuan, Tian Hui, Li Yang, et al. Investigation on technology and performance of T joint of carbon steel welded by large tilt angle laser welding with filler wire from double sides[J]. Welding & Joining, 2017(12): 56 − 60.

    [2] 李洋, 郭丽娟, 刘东军, 等. 激光填丝焊碳钢车体不等厚对接接头疲劳性能[J]. 电焊机, 2018, 48(5): 31 − 33.

    Li Yang, Guo Lijuan, Liu Dongjun, et al. Fatigue properties of different thickness butt joints of carbon steel body with laser fillet welding[J]. Electric Welding Machine, 2018, 48(5): 31 − 33.

    [3] 格尔内(英). 焊接结构的疲劳[M]. 周殿群, 译. 北京: 机械工业出版社, 1988.

    Gurney T. Fatigue of welded structure[M]. Cambridge: Cambridge University Press, 1979.

    [4] 郭广平, 丁传富. 航空材料力学性能检测[M]. 北京: 机械工业出版社, 2017.

    Guo Guangping, Ding Chuanfu. Mechanical testing of aeronautical materials[M]. Beijing: Mechanical Industry Press, 2017.

    [5]

    Wei W, Li C, Sun Y, et al. Investigation of the self-heating of Q460 butt joints and an S-N curve modeling method based on infrared thermographic data for high-cycle fatigue[J]. Metals, 2021, 11(2): 232. doi: 10.3390/met11020232

    [6] 魏巍, 孙屹博, 杨光, 等. 基于能量耗散的Q460焊接接头疲劳强度评估[J]. 焊接学报, 2021, 42(4): 49 − 55.

    Wei Wei, Sun Yibo, Yang Guang, et al. Fatigue strength evaluation of Q460 weld joints based on energy dissipation[J]. Transactions of the China Welding Institution, 2021, 42(4): 49 − 55.

    [7]

    Huang J, Garnier C, Pastor M, et al. Investigation of self-heating and life prediction in CFRP laminates under cyclic shear loading condition based on the infrared thermographic data[J]. Engineering Fracture Mechanics, 2020, 229: 106971. doi: 10.1016/j.engfracmech.2020.106971

    [8]

    Jia X, Zhu P, Guan K, et al. Fatigue evaluation method based on fracture fatigue entropy and its application on spot welded joints[J]. Engineering Fracture Mechanics, 2022, 275: 108820.

    [9] 孙杨, 刘亚良, 李赫, 等. 基于红外热像法的SUS301L-Q235B异种材料点焊接头疲劳强度快速评定[J]. 焊接学报, 2020, 41(1): 61 − 66.

    Sun Yang, Liu Yaliang, Li He, et al. Rapid fatigue limit prediction of SUS301L-Q235B dissimilar materials spot-welded joint based on infrared thermography[J]. Transactions of the China Welding Institution, 2020, 41(1): 61 − 66.

    [10]

    Chao J, Weimin L, Jian F, et al. Thermal fatigue behavior of copper/stainless steel explosive welding joint[J]. China Welding, 2021, 30(4): 25 − 29.

    [11]

    Zhang L, Liu X, Wu S, et al. Rapid determination of fatigue life based on temperature evolution[J]. International Journal of Fatigue, 2013, 54(9): 1 − 6.

    [12] 郭杏林, 王晓钢. 疲劳热像法研究综述[J]. 力学进展, 2009, 39(2): 217 − 227.

    Guo Xingling, Wang Xiaogang. Overview on the thermographic method for fatigue research[J]. Advances In Mechanics, 2009, 39(2): 217 − 227.

    [13]

    Fan J, Zhao Y, Guo X. A unifying energy approach for high cycle fatigue behavior evaluation[J]. Mechanics of Materials, 2018, 120(5): 15 − 25.

    [14] 樊俊铃. 基于能量耗散的Q235钢高周疲劳性能评估[J]. 机械工程学报, 2018, 54(6): 1 − 9. doi: 10.3901/JME.2018.06.001

    Fan Junling. High cycle fatigue behavior evaluation of Q235 steel based on energy dissipation[J]. Journal of Mechanical Engineering, 2018, 54(6): 1 − 9. doi: 10.3901/JME.2018.06.001

    [15]

    Teng Z, Wu H, Boller C, et al. A unified fatigue life calculation based on intrinsic thermal dissipation and microplasticity evolution[J]. International Journal of Fatigue, 2020, 131: 105370. doi: 10.1016/j.ijfatigue.2019.105370

    [16]

    Yang W, Guo Q, Fan J, et al. Effect of aging temperature on energy dissipation and high-cycle fatigue properties of FV520B stainless steel[J]. Engineering Fracture Mechanics, 2021, 242: 107464. doi: 10.1016/j.engfracmech.2020.107464

    [17]

    Yang W, Guo X, Guo Q, et al. Rapid evaluation for high-cycle fatigue reliability of metallic materials through quantitative thermography methodology[J]. International Journal of Fatigue, 2019, 124: 461 − 472. doi: 10.1016/j.ijfatigue.2019.03.024

    [18]

    Guo Q, Zaïri F, Yang W. Evaluation of intrinsic dissipation based on self-heating effect in high-cycle metal fatigue[J]. International Journal of Fatigue, 2020, 139: 105653. doi: 10.1016/j.ijfatigue.2020.105653

    [19]

    Guo Q, Guo X. Research on high-cycle fatigue behavior of FV520B stainless steel based on intrinsic dissipation[J]. Materials & Design, 2016, 90: 248 − 255.

    [20]

    Guo Q, Guo X, Fan J, et al. An energy method for rapid evaluation of high-cycle fatigue parameters based on intrinsic dissipation[J]. International Journal of Fatigue, 2015, 80: 136 − 144. doi: 10.1016/j.ijfatigue.2015.04.016

    [21]

    Zhang H, Wu G, Yan Z, et al. An experimental analysis of fatigue behavior of AZ31B magnesium alloy welded joint based on infrared thermography[J]. Materials and Design, 2014, 55: 785 − 791. doi: 10.1016/j.matdes.2013.10.036

    [22] 郭少飞, 刘雪松, 张红霞, 等. 基于能量耗散的AZ31B镁合金接头疲劳极限快速评估[J]. 焊接学报, 2020, 41(12): 38 − 43.

    Guo Shaofei, Liu Xuesong, Zhang Hongxia, et al. Rapid evaluation of fatigue limit of AZ31B magnesium alloy joints based on energy dissipation[J]. Transactions of the China Welding Institution, 2020, 41(12): 38 − 43.

    [23]

    Liu Y, Sun Y, Sun Y, et al. Rapid fatigue life prediction for spot-welded joint of SUS301 L-DLT stainless steel and Q235B carbon steel based on energy dissipation[J]. Advances in Mechanical Engineering, 2018, 10(11): 1 − 11.

    [24]

    Mark F, Douglas J. Historical review of internal state variable theory for inelasticity[J]. International Journal of Plasticity, 2010, 26(9): 1310 − 1334. doi: 10.1016/j.ijplas.2010.06.005

    [25]

    Rice J R. Inelastic constitutive relations for solids: An internal-variable theory and its application to metal plasticity[J]. Journal of the Mechanics and Physics of Solids, 1971, 19(6): 433 − 455. doi: 10.1016/0022-5096(71)90010-X

    [26]

    Nourian-Avval A, Khonsari M. Rapid prediction of fatigue life based on thermodynamic entropy generation[J]. International Journal of Fatigue, 2021, 145: 106105. doi: 10.1016/j.ijfatigue.2020.106105

  • 期刊类型引用(1)

    1. 王晨,雷正龙,宋文清,杨烁,李旭东. CoCrW与T800焊丝对DZ125高温合金表面激光熔覆耐磨层组织及性能的影响. 中国激光. 2025(04): 101-109 . 百度学术

    其他类型引用(3)

图(9)  /  表(3)
计量
  • 文章访问数:  213
  • HTML全文浏览量:  60
  • PDF下载量:  57
  • 被引次数: 4
出版历程
  • 收稿日期:  2022-09-28
  • 网络出版日期:  2023-07-18
  • 刊出日期:  2023-08-16

目录

    /

    返回文章
    返回