A rapid fatigue life prediction model of butt joints based on energy dissipation
-
摘要: 通过引入ISV(internal state variable)本构模型中的α和β变量,建立了一种与对接接头高周疲劳滞弹性和非弹性行为相关的能量耗散模型,并定义了两个特征应力幅,即标志着可恢复滞弹性和不可恢复非弹性行为开始形成的关键应力幅σc0和σc1(疲劳极限);借助该能量耗散模型,研究了不同应力幅下的对接接头能量耗散响应情况,发现能量耗散在疲劳极限附近呈现从线性响应到非线性响应的过渡;在此基础上,考虑到当应力幅高于疲劳极限时,全寿命周期的能量耗散存在临界值,结合与损伤相关的非弹性耗散,研发了一种基于损伤累积的疲劳寿命预测模型,并对接头的疲劳寿命进行了快速预测. 结果表明,经预测数据和试验数据拟合的中值S-N曲线一致程度较好,从而证明了模型可用于实现对接接头的疲劳寿命快速、精确预测.Abstract: An energy dissipation model for high cycle fatigue linked to anelastic and inelastic behavior of butt joints is developed by introducing α and β variables of the internal state variable (ISV) constitutive model. The crucial stress amplitudes, σc0 and σc1 (fatigue limit), corresponding to the onset of recoverable anelastic and unrecoverable inelastic behavior, are defined as two characteristic stress amplitudes. The energy dissipation response of butt joints under different stress amplitudes is examined using this energy dissipation model. The results demonstrate that when stress levels are close to the fatigue limit, the energy dissipation exhibits a transition from a linear response to a nonlinear response. On this basis, considering that when the stress amplitude is above the fatigue limit, there is a critical value for the energy dissipation during the fatigue duration, a fatigue life prediction model based on damage accumulation is developed in combination with the damage-related inelastic dissipation, thereby reaching a rapid fatigue life prediction. The results show that the median S-N curve fitted by the predicted data and the test data is in good agreement, and this validates that the proposed model can be utilized to realize a rapid and accurate prediction of the fatigue life of butt joints.
-
Keywords:
- internal state variable (ISV) /
- energy dissipation /
- fatigue life /
- S-N curve
-
-
表 1 Q310NQL2和Q345NQR2耐候钢以及ER50-G焊丝主要化学成分
Table 1 Main chemical composition of Q310NQL2, Q345NQR2 weathering steel, and ER50-G filler wire
材料 C Si Mn P S Cu Cr Ni Ti Fe Q310NQL2 ≤0.12 0.25 ~ 0.75 0.20 ~ 0.50 0.06 ~ 0.12 ≤0.02 0.25 ~ 0.50 0.30 ~ 1.25 0.12 ~ 0.65 — 余量 Q345NQR2 ≤0.12 0.25 ~ 0.75 ≤1.0 0.06 ~ 0.15 ≤0.02 0.25 ~ 0.50 0.30 ~ 1.25 0.12 ~ 0.65 — 余量 ER50-G ≤0.10 ≤0.60 0.90 ~ 1.30 ≤0.025 ≤0.02 0.20 ~ 0.50 0.30 ~ 0.90 0.20 ~ 0.60 — 余量 表 2 Q310NQL2和Q345NQR2耐候钢以及ER50-G焊丝力学性能
Table 2 Mechanical propertie parameters of Q310NQL2, Q345NQR2 weathering steel, and ER50-G filler wire
材料 屈服强度
ReL/MPa抗拉强度
Rm/MPa断后伸长率
A(%)Q310NQL2 ≥310 480 ~ 670 ≥22 Q345NQR2 ≥345 490 ~ 675 ≥22 ER-50G ≥400 ≥500 ≥22 表 3 能量耗散模型参数
Table 3 Parameters of energy disspation model
σc0 σc1 Fan Fin k 65 126 4.7 × 10−2 8.20 × 10−23 10.18 -
[1] 郭丽娟, 田慧, 李洋, 等. 大角度激光填丝双面焊碳钢车体T形接头工艺及性能研究[J]. 焊接, 2017(12): 56 − 60. Guo Lijuan, Tian Hui, Li Yang, et al. Investigation on technology and performance of T joint of carbon steel welded by large tilt angle laser welding with filler wire from double sides[J]. Welding & Joining, 2017(12): 56 − 60.
[2] 李洋, 郭丽娟, 刘东军, 等. 激光填丝焊碳钢车体不等厚对接接头疲劳性能[J]. 电焊机, 2018, 48(5): 31 − 33. Li Yang, Guo Lijuan, Liu Dongjun, et al. Fatigue properties of different thickness butt joints of carbon steel body with laser fillet welding[J]. Electric Welding Machine, 2018, 48(5): 31 − 33.
[3] 格尔内(英). 焊接结构的疲劳[M]. 周殿群, 译. 北京: 机械工业出版社, 1988. Gurney T. Fatigue of welded structure[M]. Cambridge: Cambridge University Press, 1979.
[4] 郭广平, 丁传富. 航空材料力学性能检测[M]. 北京: 机械工业出版社, 2017. Guo Guangping, Ding Chuanfu. Mechanical testing of aeronautical materials[M]. Beijing: Mechanical Industry Press, 2017.
[5] Wei W, Li C, Sun Y, et al. Investigation of the self-heating of Q460 butt joints and an S-N curve modeling method based on infrared thermographic data for high-cycle fatigue[J]. Metals, 2021, 11(2): 232. doi: 10.3390/met11020232
[6] 魏巍, 孙屹博, 杨光, 等. 基于能量耗散的Q460焊接接头疲劳强度评估[J]. 焊接学报, 2021, 42(4): 49 − 55. Wei Wei, Sun Yibo, Yang Guang, et al. Fatigue strength evaluation of Q460 weld joints based on energy dissipation[J]. Transactions of the China Welding Institution, 2021, 42(4): 49 − 55.
[7] Huang J, Garnier C, Pastor M, et al. Investigation of self-heating and life prediction in CFRP laminates under cyclic shear loading condition based on the infrared thermographic data[J]. Engineering Fracture Mechanics, 2020, 229: 106971. doi: 10.1016/j.engfracmech.2020.106971
[8] Jia X, Zhu P, Guan K, et al. Fatigue evaluation method based on fracture fatigue entropy and its application on spot welded joints[J]. Engineering Fracture Mechanics, 2022, 275: 108820.
[9] 孙杨, 刘亚良, 李赫, 等. 基于红外热像法的SUS301L-Q235B异种材料点焊接头疲劳强度快速评定[J]. 焊接学报, 2020, 41(1): 61 − 66. Sun Yang, Liu Yaliang, Li He, et al. Rapid fatigue limit prediction of SUS301L-Q235B dissimilar materials spot-welded joint based on infrared thermography[J]. Transactions of the China Welding Institution, 2020, 41(1): 61 − 66.
[10] Chao J, Weimin L, Jian F, et al. Thermal fatigue behavior of copper/stainless steel explosive welding joint[J]. China Welding, 2021, 30(4): 25 − 29.
[11] Zhang L, Liu X, Wu S, et al. Rapid determination of fatigue life based on temperature evolution[J]. International Journal of Fatigue, 2013, 54(9): 1 − 6.
[12] 郭杏林, 王晓钢. 疲劳热像法研究综述[J]. 力学进展, 2009, 39(2): 217 − 227. Guo Xingling, Wang Xiaogang. Overview on the thermographic method for fatigue research[J]. Advances In Mechanics, 2009, 39(2): 217 − 227.
[13] Fan J, Zhao Y, Guo X. A unifying energy approach for high cycle fatigue behavior evaluation[J]. Mechanics of Materials, 2018, 120(5): 15 − 25.
[14] 樊俊铃. 基于能量耗散的Q235钢高周疲劳性能评估[J]. 机械工程学报, 2018, 54(6): 1 − 9. doi: 10.3901/JME.2018.06.001 Fan Junling. High cycle fatigue behavior evaluation of Q235 steel based on energy dissipation[J]. Journal of Mechanical Engineering, 2018, 54(6): 1 − 9. doi: 10.3901/JME.2018.06.001
[15] Teng Z, Wu H, Boller C, et al. A unified fatigue life calculation based on intrinsic thermal dissipation and microplasticity evolution[J]. International Journal of Fatigue, 2020, 131: 105370. doi: 10.1016/j.ijfatigue.2019.105370
[16] Yang W, Guo Q, Fan J, et al. Effect of aging temperature on energy dissipation and high-cycle fatigue properties of FV520B stainless steel[J]. Engineering Fracture Mechanics, 2021, 242: 107464. doi: 10.1016/j.engfracmech.2020.107464
[17] Yang W, Guo X, Guo Q, et al. Rapid evaluation for high-cycle fatigue reliability of metallic materials through quantitative thermography methodology[J]. International Journal of Fatigue, 2019, 124: 461 − 472. doi: 10.1016/j.ijfatigue.2019.03.024
[18] Guo Q, Zaïri F, Yang W. Evaluation of intrinsic dissipation based on self-heating effect in high-cycle metal fatigue[J]. International Journal of Fatigue, 2020, 139: 105653. doi: 10.1016/j.ijfatigue.2020.105653
[19] Guo Q, Guo X. Research on high-cycle fatigue behavior of FV520B stainless steel based on intrinsic dissipation[J]. Materials & Design, 2016, 90: 248 − 255.
[20] Guo Q, Guo X, Fan J, et al. An energy method for rapid evaluation of high-cycle fatigue parameters based on intrinsic dissipation[J]. International Journal of Fatigue, 2015, 80: 136 − 144. doi: 10.1016/j.ijfatigue.2015.04.016
[21] Zhang H, Wu G, Yan Z, et al. An experimental analysis of fatigue behavior of AZ31B magnesium alloy welded joint based on infrared thermography[J]. Materials and Design, 2014, 55: 785 − 791. doi: 10.1016/j.matdes.2013.10.036
[22] 郭少飞, 刘雪松, 张红霞, 等. 基于能量耗散的AZ31B镁合金接头疲劳极限快速评估[J]. 焊接学报, 2020, 41(12): 38 − 43. Guo Shaofei, Liu Xuesong, Zhang Hongxia, et al. Rapid evaluation of fatigue limit of AZ31B magnesium alloy joints based on energy dissipation[J]. Transactions of the China Welding Institution, 2020, 41(12): 38 − 43.
[23] Liu Y, Sun Y, Sun Y, et al. Rapid fatigue life prediction for spot-welded joint of SUS301 L-DLT stainless steel and Q235B carbon steel based on energy dissipation[J]. Advances in Mechanical Engineering, 2018, 10(11): 1 − 11.
[24] Mark F, Douglas J. Historical review of internal state variable theory for inelasticity[J]. International Journal of Plasticity, 2010, 26(9): 1310 − 1334. doi: 10.1016/j.ijplas.2010.06.005
[25] Rice J R. Inelastic constitutive relations for solids: An internal-variable theory and its application to metal plasticity[J]. Journal of the Mechanics and Physics of Solids, 1971, 19(6): 433 − 455. doi: 10.1016/0022-5096(71)90010-X
[26] Nourian-Avval A, Khonsari M. Rapid prediction of fatigue life based on thermodynamic entropy generation[J]. International Journal of Fatigue, 2021, 145: 106105. doi: 10.1016/j.ijfatigue.2020.106105
-
期刊类型引用(1)
1. 王晨,雷正龙,宋文清,杨烁,李旭东. CoCrW与T800焊丝对DZ125高温合金表面激光熔覆耐磨层组织及性能的影响. 中国激光. 2025(04): 101-109 . 百度学术
其他类型引用(3)