高级检索

高气压环境等离子弧行为与工艺研究

李勇, 佟浩东, 高辉, 周灿丰

李勇, 佟浩东, 高辉, 周灿丰. 高气压环境等离子弧行为与工艺研究[J]. 焊接学报, 2023, 44(6): 82-89. DOI: 10.12073/j.hjxb.20220712002
引用本文: 李勇, 佟浩东, 高辉, 周灿丰. 高气压环境等离子弧行为与工艺研究[J]. 焊接学报, 2023, 44(6): 82-89. DOI: 10.12073/j.hjxb.20220712002
LI Yong, TONG Haodong, GAO Hui, ZHOU Canfeng. Study on behavior and process of plasma arc in high pressure environment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(6): 82-89. DOI: 10.12073/j.hjxb.20220712002
Citation: LI Yong, TONG Haodong, GAO Hui, ZHOU Canfeng. Study on behavior and process of plasma arc in high pressure environment[J]. TRANSACTIONS OF THE CHINA WELDING INSTITUTION, 2023, 44(6): 82-89. DOI: 10.12073/j.hjxb.20220712002

高气压环境等离子弧行为与工艺研究

基金项目: 盾构与镗孔技术国家重点实验室开放基金项目(SKLST-2018-K01);北京石油化工学院重要科研成果培育项目(PCF-011);北京市属高校高水平教师队伍建设支持计划-高水平创新团队建设计划(BPHR20220110);面向北京高端制造业的高水平应用型科研成果孵化转化平台建设(11000023T000002199202)
详细信息
    作者简介:

    李勇,硕士研究生;主要从事无损检测以及热切割技术研究;Email: 2020540207@bipt.edu.cn

    通讯作者:

    高辉,博士,副教授;主要从事焊接自动化技术研究;Email: gaohui@bipt.edu.cn

  • 中图分类号: TG 483

Study on behavior and process of plasma arc in high pressure environment

  • 摘要: 等离子弧切割技术因其高效稳定的工艺优势被广泛应用于工业领域. 文中以空气等离子弧为研究对象,通过COMSOL Multiphysics软件建立了喷嘴结构的二维轴对称有限元数学模型,并对电弧磁流体模型进行了优化. 基于磁流体动力学和电弧等离子体理论,选用等离子平衡放电多物理场接口,并确立了空气等离子电弧模型的控制方程和边界条件,实现对电弧模型的编译求解. 仿真结果表明,在引弧电流一致的条件下,随着环境压力的增加,电弧在温度分布和速度分布上均呈现收缩的态势. 基于3 MPa 高压焊接试验舱,搭建了高压环境等离子弧切割实验系统,通过对气路和非高频引弧电路的优化设计,实现了环境压力为0.1 ~ 0.7 MPa的稳定起弧. 并基于此开展了高压梯度下的等离子弧切割实验,并结合切割质量指标研究了环境压力对等离子弧电离行为的影响.
    Abstract: Plasma arc cutting technology is widely used in industrial fields because of its efficient and stable process advantages. Taking the air plasma arc as the research object, this paper establishes a two-dimensional axisymmetric finite element mathematical model of the nozzle structure through COMSOL multiphysics software, and optimizes the arc magnetic fluid model. Based on magnetohydrodynamics and arc plasma theory, the multi physical field interface of plasma equilibrium discharge is selected, and the control equations and boundary conditions of air plasma arc model are established to realize the compilation and solution of the arc model. The simulation results show that under the condition of consistent arc starting current, the arc shrinks in temperature distribution and velocity distribution with the increase of ambient pressure. Based on the 3 MPa high-pressure welding test chamber, an experimental system of plasma arc cutting in high-pressure environment is built. Through the optimization design of gas circuit and non high-frequency arc starting circuit, the stable arc starting with environmental pressure of 0.1 ~ 0.7 MPa is realized. Based on this, plasma arc cutting experiments under high pressure gradient were carried out, and the influence of environmental pressure on plasma arc ionization behavior was studied combined with cutting quality index.
  • 图  1   等离子弧割炬模型

    Figure  1.   Plasma arc cutting torch model

    图  2   网格剖分

    Figure  2.   mesh generation

    图  3   0.1 ~ 0.4 MPa环境压力下电弧温度场

    Figure  3.   Arc temperature field under 0.1 ~ 0.4 MPa ambient pressure. (a) 0.1 MPa; (b) 0.2 MPa; (c) 0.3 MPa; (d) 0.4 MPa

    图  4   0.5 ~ 0.7 MPa环境压力下电弧温度场

    Figure  4.   Arc temperature field under 0.5 ~ 0.7 MPa ambient pressure. (a) 0.5 MPa; (b) 0.6 MPa; (c) 0.7 MPa

    图  5   0.1 ~ 0.4 MPa环境压力下电弧速度场

    Figure  5.   Arc velocity field under 0.1 ~ 0.4 MPa ambient pressure. (a) 0.1 MPa; (b) 0.2 MPa; (c) 0.3 MPa; (d) 0.4 MPa

    图  6   0.5 ~ 0.7 MPa环境压力下电弧速度场

    Figure  6.   Arc velocity field under 0.5 ~ 0.7 MPa ambient pressure. (a) 0.5 MPa; (b) 0.6 MPa; (c) 0.7 MPa

    图  7   0.1 ~ 0.2 MPa环境压力下工件温度场

    Figure  7.   Temperature field of workpiece under 0.1 ~ 0.2 MPa ambient pressure. (a) 0.1 MPa; (b) 0.2 MPa

    图  8   0.3 ~ 0.7 MPa环境压力下工件温度场

    Figure  8.   Temperature field of workpiece under 0.3 ~ 0.7 MPa ambient pressure. (a) 0.3 MPa; (b) 0.4 MPa; (c) 0.5 MPa; (d) 0.6 MPa; (e) 0.7 MPa

    图  9   等离子弧切割试验平台

    Figure  9.   Plasma arc cutting test platform

    图  10   不同环境压力下的电弧图像

    Figure  10.   Arc images under different ambient pressures

    图  11   不同环境压力下工件割面

    Figure  11.   workpiece cutting surface under different ambient pressures

    图  12   不同环境压力下的平面度、切口宽度和后拖量

    Figure  12.   Flatness、incision width and drag amount under different environmental pressures

    表  1   求解域边界条件

    Table  1   boundary conditions of solution domain

    边界电场条件磁场条件传热条件T1/K流体条件
    AB绝缘绝缘300
    BC绝缘绝缘300
    CD绝缘绝缘热通量出口
    DE接地绝缘热通量
    EF接地绝缘热通量
    FG接地绝缘热通量
    GH绝缘绝缘热通量出口
    GI热源
    ID热源
    HJ对称对称对称对称
    JK热源
    KM热源
    JL对称对称对称
    LM电流密度绝缘300
    AM绝缘绝缘300入口
    下载: 导出CSV

    表  2   切割质量参数

    Table  2   Cutting quality parameters

    环境压力P/MPa平面度F/mm切口宽度W/mm后拖量N/mm
    0.10.73.51.8
    0.20.83.53.4
    0.31.13.64.5
    0.41.43.73.9
    0.51.63.85.5
    0.61.73.85.2
    0.72.03.94.8
    下载: 导出CSV
  • [1] 胡义勇, 吴波, 顾先凯, 等. 浅谈等离子弧切割在管道开孔中应用[J]. 中国石油和化工标准与质量, 2021, 41(15): 118 − 119. doi: 10.3969/j.issn.1673-4076.2021.15.055

    Hu Yiyong, Wu Bo, Gu Xiankai, et al. Discussion on the application of plasma arc cutting in pipe opening[J]. China Petroleum and Chemical Industry Standards and Quality, 2021, 41(15): 118 − 119. doi: 10.3969/j.issn.1673-4076.2021.15.055

    [2] 胡义勇, 李夏喜, 李松, 等. 带压燃气环境下等离子弧切割技术可行性研究[J]. 煤气与热力, 2019, 39(5): 37 − 39. doi: 10.13608/j.cnki.1000-4416.2019.05.020

    Hu Yiyong, Li Xiaxi, Li Song, et al. Feasibility study on plasma arc cutting technology in pressurized gas environment[J]. Gas and Heat, 2019, 39(5): 37 − 39. doi: 10.13608/j.cnki.1000-4416.2019.05.020

    [3] 陈月峰, 严得忠, 程定富, 等. 国内数控等离子弧切割技术的发展与应用[J]. 焊接技术, 2017, 46(8): 1 − 4. doi: 10.13846/j.cnki.cn12-1070/tg.2017.08.001

    Chen Yuefeng, Yan Dezhong, Cheng Dingfu, et al. Development and application of CNC plasma arc cutting technology in China[J]. Welding Technology, 2017, 46(8): 1 − 4. doi: 10.13846/j.cnki.cn12-1070/tg.2017.08.001

    [4] 陈传杰, 孔维宾, 方忠庆, 等. 基于电磁模型的大气压表面波等离子体数值模拟[J]. 电子科技大学学报, 2022, 51(2): 305 − 313. doi: 10.12178/1001-0548.2021238

    Chen Chuanjie, Kong Weibin, Fang Zhongqing, et al. Numerical simulation of atmospheric pressure surface wave plasma based on electromagnetic model[J]. Journal of University of Electronic Science and technology, 2022, 51(2): 305 − 313. doi: 10.12178/1001-0548.2021238

    [5] 张达, 叶凯, 唐政刚, 等. 等离子体冶金的现状与发展[J]. 中国有色金属学报, 2021, 31(7): 1907 − 1921. doi: 10.11817/j.ysxb.1004.0609.2021-37834

    Zhang Da, Ye Kai, Tang Zhenggang, et al. Current situation and development of plasma metallurgy[J]. Chinese Journal of Nonferrous Metals, 2021, 31(7): 1907 − 1921. doi: 10.11817/j.ysxb.1004.0609.2021-37834

    [6] 刘吉宇, 张帆, 陈阳, 等. 低温等离子体辅助加工综述[J]. 航空学报, 2021, 42(10): 74 − 86.

    Liu Jiyu, Zhang Fan, Chen Yang, et al. Overview of low temperature plasma assisted machining[J]. Acta Aeronautica Sinica, 2021, 42(10): 74 − 86.

    [7]

    Matus Gajdos, Tomas Kristofic, Slavomir Jankovic, et al. Use of plasma-based tool for plug and abandonment[C]. Aberdeen, Scotland, UK: SPE Offshore Europe Conference and Exhibition, 2015.

    [8] 陈林柯. 环境压力对等离子切割电弧的影响研究[D]. 北京: 北京石油化工学院, 2019.

    Chen Linke. Study on the influence of ambient pressure on plasma cutting arc [D]. Beijing: Beijing Institute of Petrochemical Technology, 2019.

    [9] 谷孝满, 黄松涛, 焦向东, 等. 高气压环境下脉冲MIG焊频率优化改善电弧稳定性的研究[J]. 电焊机, 2015, 45(3): 69 − 74.

    Gu Xiaoman, Huang Songtao, Jiao Xiangdong, et al. Research on improving arc stability by optimizing the frequency of pulsed MIG welding in high pressure environment[J]. Electric Welding Machine, 2015, 45(3): 69 − 74.

    [10] 胡辉, 杨旗, 包斌, 等. 基于ANSYS的空气电弧放电等离子体温度数值模拟[J]. 电工电能新技术, 2009, 28(2): 20 − 23. doi: 10.3969/j.issn.1003-3076.2009.02.005

    Hu Hui, Yang Qi, Bao bin, et al. Numerical simulation of plasma temperature in air arc discharge based on ANSYS[J]. New Technology of Electrical Energy, 2009, 28(2): 20 − 23. doi: 10.3969/j.issn.1003-3076.2009.02.005

    [11]

    Baimbetov F B, Giniyatova S G. Interparticle interaction and transport processes in dense semiclassical plasmas[J]. Physics of Plasmas, 2005, 12(4): 1 − 4.

    [12]

    Herrebout D, Bogaerts A, Yan M, et al. Modeling of a capacitively coupled radio-frequency methane plasma: Comparison between a one-dimensional and two-dimensional fluid model[J]. Journal of Applied Physics, 2002, 92(5): 2290 − 2295. doi: 10.1063/1.1500789

    [13]

    Annemie Bogaerts, Luís L Alves. Special issue on numerical modelling of low-temperature plasmas for various applications — part II: Research papers on numerical modelling for various plasma applications[J]. Plasma Processes and Polymers, 2017, 14(4-5).

    [14] 王路明, 高辉, 周灿丰, 等. 高压环境等离子切割电弧数值模拟[J]. 焊接, 2021(5): 15 − 19.

    Wang Luming, Gao Hui, Zhou Canfeng, et al. Numerical simulation of plasma cutting arc in high pressure environment[J]. Welding & Joining, 2021(5): 15 − 19.

    [15]

    Rong M, Li M, Wu Y, et al. 3-D MHD modeling ofinternal fault arc in a closed container[J]. IEEE Transactions on Power Delivery, 2017, 32(3): 1220 − 1227. doi: 10.1109/TPWRD.2014.2375891

    [16] 向凌峰. 基于磁流体力学模型的稳态真空电弧建模与仿真[D]. 武汉: 华中科技大学, 2019.

    Xiang Lingfeng. Modeling and simulation of steady-state vacuum arc based on MHD model [D]. Wuhan: Huazhong University of Science and Technology, 2019.

    [17] 李国明. 真空断路器开断过程中电弧等离子体的特性研究[D]. 北京: 华北电力大学, 2019.

    Li Guoming. Study on the characteristics of arc plasma during the breaking process of vacuum circuit breaker [D]. Beijing: North China Electric Power University, 2019.

    [18] 李天庆, 陈璐, 张宇, 等. 气流再压缩等离子弧焊接电弧行为[J]. 焊接学报, 2020, 41(5): 50 − 55. doi: 10.12073/j.hjxb.20191125002

    Li Tianqing, Chen Lu, Zhang Yu, et al. Arc behavior of gas flow recompression plasma arc welding[J]. Transactions of The China Welding Institution, 2020, 41(5): 50 − 55. doi: 10.12073/j.hjxb.20191125002

    [19] 李正农, 李炜, 张学文. 应用等离子体激励抑制风力机叶片噪声的数值仿真研究[J]. 太阳能学报, 2021, 42(12): 220 − 229. doi: 10.19912/j.0254-0096.tynxb.2020-0001

    Li Zhengnong, Li Wei, Zhang Xuewen. Numerical simulation study on suppression of wind turbine blade noise by plasma excitation[J]. Journal of Solar Energy, 2021, 42(12): 220 − 229. doi: 10.19912/j.0254-0096.tynxb.2020-0001

    [20] 李岩, 王领, 张冀翔, 等. 基于电弧-熔池耦合的小孔型等离子弧焊接简化模型[J]. 机械工程学报, 2021, 57(18): 144 − 152. doi: 10.3901/JME.2021.18.144

    Li Yan, Wang Ling, Zhang Jixiang, et al. A simplified model of small hole plasma arc welding based on arc pool coupling[J]. Journal of Mechanical Engineering, 2021, 57(18): 144 − 152. doi: 10.3901/JME.2021.18.144

    [21] 佟浩东. 高压环境等离子弧电离行为及其切割工艺研究[D]. 北京: 北京石油化工学院, 2022.

    Tong Haodong. Research on plasma arc ionization behavior and cutting technology in high pressure environment [D]. Beijing: Beijing Institute of Petrochemical Technology, 2022.

    [22] 孟宪宇. Nb-Ti-Si合金等离子—感应复合熔炼数值模拟与实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    Meng Xianyu. Numerical simulation and experimental study on plasma induction composite melting of Nb-Ti-Si alloy [D]. Harbi: Harbin Institute of Technology, 2019.

    [23] 李子晗, 忻建文, 肖笑, 等. 热导型等离子弧焊电弧物理特性和熔池动态行为[J]. 金属学报, 2021, 57(5): 693 − 702.

    Li Zihan, Xin Jianwen, Xiao Xiao, et al. Physical characteristics of thermal conductive plasma arc welding arc and dynamic behavior of molten pool[J]. Acta Metallurgica Sinica, 2021, 57(5): 693 − 702.

    [24] 郎瑞卿, 韩永全, 白雪宇, 等. 变极性频率对铝合金变极性等离子弧穿孔立焊熔池稳定性的影响机理(英文)[J]. 稀有金属材料与工程, 2022, 51(4): 1172 − 182.

    Lang Ruiqing, Han Yongquan, Bai Xueyu, et al. The mechanism of the influence of variable polarity frequency on the stability of aluminum alloy melt pool in variable polarity plasma arc piercing vertical welding[J]. Rare Metal Materials and Engineering, 2022, 51(4): 1172 − 182.

  • 期刊类型引用(8)

    1. 涂文斌,胡志华,邹雨柔,刘冠鹏,王善林,陈玉华. 时效时间和Sb添加对Sn-9Zn-3Bi/Cu焊点界面金属间化合物生长行为的影响. 材料导报. 2025(06): 193-198 . 百度学术
    2. 涂文斌,吴鸿燕,梅琪,王韩冰,吴吉洋,颜文俊. 添加Sb对Sn-9Zn-3Bi/Cu钎料接头显微组织及力学性能的影响. 电子元件与材料. 2024(09): 1154-1160+1166 . 百度学术
    3. 任安世,曲松涛,董新华,史清宇,张弓,朱忠言. 氧含量对Sn-9Zn-2.5Bi-1.5In低温波峰焊焊接性能的影响. 焊接学报. 2022(04): 68-73+99+117 . 本站查看
    4. 薛鹏,何鹏,龙伟民,宋闽. 稀土、Ga元素及其协同效应对无铅钎料组织和性能的影响. 焊接学报. 2021(04): 1-19+97 . 本站查看
    5. 刘广柱,岳迪,康宇,谢宏宇,何定金. 纳米Cr颗粒对Sn-Zn-Bi-In/Cu钎焊焊点性能的影响. 材料工程. 2021(11): 163-170 . 百度学术
    6. 刘广柱,岳迪,康宇,孙建宇. 含Bi、Ga元素的Sn-9Zn低温无铅钎料研究. 热加工工艺. 2021(23): 36-40 . 百度学术
    7. 孙文栋,龚世良,张弓,史清宇. 氮气气氛下氧含量对Sn-Zn/Cu焊接接头组织的影响及其产业应用. 机械制造文摘(焊接分册). 2020(02): 1-6 . 百度学术
    8. 李正兵,胡德安,陈益平,程东海,何凯,郭义乐. Fe颗粒对时效过程中SnBi/Cu接头组织及性能影响. 焊接学报. 2020(08): 22-28+98 . 本站查看

    其他类型引用(5)

图(12)  /  表(2)
计量
  • 文章访问数:  242
  • HTML全文浏览量:  49
  • PDF下载量:  59
  • 被引次数: 13
出版历程
  • 收稿日期:  2022-07-11
  • 网络出版日期:  2023-04-14
  • 刊出日期:  2023-06-24

目录

    /

    返回文章
    返回